

 Contract No. IST 2005-034891

Hydra

Networked Embedded System middleware for

Heterogeneous physical devices in a distributed architecture

 D6.3 Semantic Web Services Design
Document

Integrated Project

SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 48 months

Published by the Hydra Consortium 2008-08-25 - version 1.1

Coordinating Partner: C International Ltd.

Project co-funded by the European Commission

within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Public

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 2 of 78 2008-08-25

Document file: D6.3 Semantic Web services Design Document v1 01.doc

Work package: WP6

Tasks: T – 6.5

Document owner: CNet

Document history:

Version Author(s) Date Changes made

0.1
Matts Ahlsén, Peter

Rosengren, Peeter Kool
2007-08-31 ToC and initial structure

0.13 Matts Ahlsén 2007-10-19 Structure revised

0.15 CNet/ FIT /SIT 2007-11-09 Ch 4, 5

0.16 Mathias Axling 2007-11-12
Ch 4 update, service annotation and

grounding

0.17
Julian Schütte, Matts

Ahlsen
2007-11-25 Ch 4.4 Security issues

0.19
Peter Kostelnik, Peter

Butka
2007-12-07

Update of ch 4, SWS basics for

Hydra

0.20 Alexander Schneider 2007-12-12 Design of SWS

0.25

Matts Ahlsén, Peter

Rosengren, Peeter Kool,

Mathias Axling

2007-12-15

0.30
Matts Ahlsén, Peter

Rosengren
2008-01-15 Re-structuring of document

0.35
Matts Ahlsén, Peter

Rosengren
2008-01-16

Formatting and numbering of

document. Adding appendix.

0.40
Matts Ahlsén, Peter

Rosengren, Peeter Kool
2008-01-18 Revised chapter 4

0.50
Matts Ahlsén, Peter

Rosengren, Peeter Kool
2008-01-21

Revised service grounding aspects in

chapter 1 and 4.

0.60
Matts Ahlsén, Peter

Rosengren, Peeter Kool
2008-01-22 Revised scenario in chapter 4

0.70

Matts Ahlsén, Mathias

Axling, Peter Rosengren,

Peeter Kool

2008-01-23
Revised chapter 4, added UPnP

discovery example.

0.80
Matts Ahlsén, Peter

Rosengren, Peeter Kool
2008-01-24 Added service description examples.

0.90

Matts Ahlsén, Mathias

Axling, Peter Rosengren,

Peeter Kool

2008-01-25 Added service grounding examples.

0.95

Matts Ahlsén, Mathias

Axling, Peter Rosengren,

Peeter Kool

2008-01-25 Caching principles discussed

0.96
Matts Ahlsén, Peter

Rosengren
2008-01-28

Revision after internal WP6 review.

Version for Hydra Internal Review

0.98
Matts Ahlsén, Peter

Rosengren
2008-02-04 Revision after internal project review

1.0 Matts Ahlsén, Peter 2008-02-05 Final version submitted to the

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 3 of 78 2008-08-25

Rosengren European Commission

1.1 Matts Ahlsén 2008-08-25 Dissemination level set to Public

Internal review history:

Reviewed by Date Comments

Pablo Antolin 2008-01-31 Approved with comments

Daniel Thiemert 2008-02-01 Approved with comments

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 4 of 78 2008-08-25

Index:

1. Introduction .. 7

1.1 Background .. 7
1.2 Purpose, context and scope of this deliverable .. 7
1.3 Hydra Innovations and Contributions ... 7
1.4 Service-Oriented Architecture ... 9
1.5 Semantic Web Overview .. 10
1.6 Semantic Web Services for Devices ... 11

1.6.1 Ontology-based Device and Service Descriptions............................... 11
1.6.2 Semantic Discovery of Networked Devices and Services 12
1.6.3 Lightweight Orchestration of Device Services 13
1.6.4 Ontology-driven Invocation of Services .. 13
1.6.5 Secure Semantic Web Services for Devices 14
1.6.6 Automatic Generation of SWS proxies for Devices 14
1.6.7 Caching Principles ... 14

2. Executive Summary ... 15

3. Standards for Semantic Web Services ... 16

3.1 OWL Web Ontology Language for Services (OWL-S) 16
3.2 Web Service Modelling Ontology (WSMO) .. 16
3.3 Web Service Semantics (WSDL-S) .. 17
3.4 Semantic Annotations for WSDL and XML Schema (SAWSDL)..................... 18
3.5 Comparison and relation of SWS standards .. 19

3.5.1 Comparison of OWL-S and WSMO ... 19
3.5.2 Relation of OWL-S and WSMO to SAWSDL .. 19

4. Hydra approach to Semantic Web Services for Devices 22

4.1 Overview of the Semantic MDA of Hydra.. 22
4.2 Example Scenario (Sending SMS) ... 24
4.3 Ontology-based Device and Service Descriptions 25

4.3.1 Requirements ... 25
4.3.2 Implications of different SWS framework approaches on Hydra 25
4.3.3 Hydra approach: SAWSDL combined with service ontology 31

4.4 Semantic Discovery of Networked Devices and Services 33
4.4.1 Requirements ... 34
4.4.2 Discovery issues ... 34
4.4.3 Hydra Approach: Combining UPnP with semantics for discovery 35

4.5 Lightweight Orchestration of Device Services ... 38
4.5.1 Requirements ... 38
4.5.2 Orchestration in a Service-Oriented Architecture 39
4.5.3 Static or dynamic orchestration .. 41
4.5.4 Hydra approach: Lightweight orchestration 42

4.6 Ontology-driven Invocation of Services ... 43
4.6.1 Requirements ... 43
4.6.2 Service Grounding ... 43
4.6.3 Data grounding ... 48
4.6.4 Hydra approach .. 48

4.7 Secure Semantic Web Services for Devices .. 50
4.7.1 Requirements ... 50
4.7.2 Benefits ... 51
4.7.3 Possible Approaches and Related Work .. 53

4.8 Automatic Generation of SWS proxies for Devices 54

5. Concluding Remarks and Future Work .. 55

5.1 Future Work ... 55
5.1.1 Performance issues ... 55

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 5 of 78 2008-08-25

5.1.2 Semantic Discovery of Networked Devices and Services 55
5.1.3 Lightweight Orchestration of Device Services 55
5.1.4 Secure Semantic Web Services for Devices 55
5.1.5 Caching Principles ... 56

5.2 Conclusions ... 57

6. References .. 58

7. Appendix : Requirements for Hydra Semantic Web Services 60

8. Appendix: SWS related Managers .. 66

8.1 Application Service Manager .. 66
8.1.1 Purpose ... 66
8.1.2 Related WP6 requirements ... 66
8.1.3 Components ... 69
8.1.4 Dependencies ... 70
8.1.5 Interface .. 70

8.2 Application Orchestration Manager .. 71
8.2.1 Purpose ... 71
8.2.2 Related WP6 requirements ... 71
8.2.3 Components ... 73
8.2.4 Interface .. 73

8.3 Device Device Manager ... 74
8.3.1 Purpose ... 74
8.3.2 Related WP6 requirements ... 74
8.3.3 Components ... 77
8.3.4 Dependencies ... 78
8.3.5 Interface .. 78

Figures

Figure 1: Basic web service architecture ... 10
Figure 2: Basic service oriented architecture [8] .. 11
Figure 3: UDDI matching to OWL-S ... 13
Figure 4: Semantic Devices provide a high-level programming interface. 23
Figure 5: Service description using OWL-S .. 28
Figure 6: Service description using WSMO .. 29
Figure 7: Service description using SAWSDL ... 31
Figure 8: The Hydra approach in the first iteration is based on SAWSDL with references to the

ontology ... 32
Figure 9: Service Ontology in Hydra ... 32
Figure 10: A Hydra network and its components .. 35
Figure 11: UPnP Device description (pump). ... 37
Figure 12: UPnP Service description ... 37
Figure 13: Orchestration using BPEL .. 41
Figure 14: Orchestration example [8] .. 42
Figure 15: Service grounding using OWL-S ... 46
Figure 16: Service Grounding using SAWSDL .. 48
Figure 17: The Hydra approach to service grounding is based on SAWSDL with grounding

references in the ontology .. 49
Figure 18: UPnP Service Grounding by annotating SCPD ... 50
Figure 19: Application Service Manager .. 69
Figure 20: Application Orchestration Manager ... 73
Figure 21: Device Device Manager ... 77

Tables

Table 1: WP6 SWS contribution objectives .. 9
Table 2: Requirements on Device and Service Descriptions ... 25
Table 3: Requirements on Device and Service Discovery .. 34

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 6 of 78 2008-08-25

Table 4: Requirements on Orchestration ... 39
Table 5: Requirements on Invocation and Execution .. 43
Table 6: Requirements on Security of Web Services for Devices .. 50

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 7 of 78 2008-08-25

1. Introduction

1.1 Background

The Hydra project aims to research, develop, and validate middleware for networked embedded

systems that allows developers to develop cost-effective, high-performance ambient intelligence
applications for heterogeneous physical devices.

The first objective is to develop middleware based on a Service-oriented Architecture, to which the

underlying communication layer is transparent. The middleware will include support for distributed
as well as centralised architectures, security and trust, reflective properties and model-driven

development of applications.

The Hydra middleware will be deployable on both new and existing networks of distributed wireless

and wired devices, which operate with limited resources in terms of computing power, energy and

memory usage. It will allow for secure, trustworthy, and fault tolerant applications through the use
of novel distributed security and social trust components.

The embedded and mobile Service-oriented Architecture will provide interoperable access to data,
information and knowledge across heterogeneous platforms, including web services, and support

true ambient intelligence for ubiquitous networked devices.

The second objective of the Hydra project is to develop an Integrated Development Environment
(IDE). The IDE will be used by developers to develop innovative semantic model driven applications

with embedded ambient intelligence using the Hydra middleware.

1.2 Purpose, context and scope of this deliverable

Hydra aims to interconnect devices, people, terminals, buildings, etc. The Service-Oriented

Architecture and its related standards provide interoperability at a syntactic level. However, in Hydra
we also aim at providing interoperability at a semantic level. The objective of WP6 is to extend this

syntactic interoperability to the application level, i.e., in terms of semantic interoperability. This is
done by combining the use of ontologies with semantic web services.

In order to cope with the huge variety of capabilities of the devices to be integrated in Hydra, the

middleware layer should provide adaptations to whatever interface the devices offer. To achieve
this, Hydra aims to be able to describe the capabilities of the devices (ontologies) in such way that

an automatic agent can understand these capabilities and use them. Once the semantics describing
the model of the other device has been found, then the device capabilities could be accessed. This is

done using semantic web service technologies.

This document (D6.3) describes Semantic Web Services Design principles of Hydra. It complements
deliverable D6.2 MDA Design Document which describes the semantic model driven architecture of

Hydra.

Chapter 1 gives an introduction to semantic web services and the contributions Hydra makes.

Chapter 2 provides and executive summary. Chapter 3 gives and overview and analyses different

existing standards in this area, while chapter 4 focuses on describing the approach and design
decisions Hydra makes with regards to semantic web services for devices in light of our current

understanding of the requirements. Finally in chapter 5 we discuss our intended future work. There
are also two appendices attached to the document – A complete summary for the requirements with

regards to semantic web services for devices, and the specification of relevant software managers.

1.3 Hydra Innovations and Contributions

Hydra‟s technological innovations in Semantic Web Service Design will be achieved in the following

areas:

 Ontology-based Device and Service Descriptions

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 8 of 78 2008-08-25

 Semantic Discovery and Advertising of Networked Devices and their Services

 Lightweight orchestration and composition of Device Services

 Ontology-driven Invocation and Execution of Device Services

 Secure Semantic Web Services for Devices

 Automatic generation of SWS Device Proxies

 Caching principles

The following highlighted extract from table 5 in the DOW section 4.5 “Technologies to be used,
researched and developed” summaries the intended contributions from WP6 with respect to SoA and

semantic web services for devices.

WP 6 SoA and MDA middleware

Technology

area

Use of existing

technologies
New technologies to

be developed

New technologies

to be researched

Embedded
and mobile
service-
oriented
architectures
for AmI

The Hydra
middleware will be
based on mature
web service
technologies such as
SOA, SOAP, WSDL,
BPEL etc. to the
furthest extend
possible

Embedded web
services will be built
using standard WS
technologies
including:

• Web services
stack

• Fast evaluation of
WS

• Semantic stack

Technologies for bringing
semantic web service
technology down to
device level to provide
semantic interoperability
between devices.


New technologies for
integration of WS with
the device level will be
researched. This will
include:

 Automatic
generation of web services
device proxies.

 Caching
principles

Semantic
Model-Driven
Architecture for
AmI

The model driven
architecture will be
build with standard
web service
technologies
including domain
model meta
descriptors such as
IFC and HL7 classes

Ontology
frameworks will be
based on standards
such as OWL

Horizontal standards
such as WS-
Coordination and
WS-Transaction will
be considered

New technologies
for maintaining and
accessing
distributed domain
meta models will
be developed

Semantic
cooperative
instantiation of
devices, personas
and services will be
developed

Technologies for
Automatic Device
classification

Technologies for
Semantic-cooperative
reasoning.

New techniques based
on combination UML
and OWL for automatic
construction and
maintenance of
ontologies will be
researched.

Research of principles
and technologies for
Intelligent Rules
Processing to allow for
configuration of device
behaviour.

Semantics
and
knowledge
management

Prototype semantic
approaches will be
used, e.g., inspired
by OWL-S or SWS
based on the

New technologies
to provide
interoperability at
the semantic level
will be developed

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 9 of 78 2008-08-25

Semantic Web, to
support properties
such as discovery,
context awareness,
self-* properties

Standard Knowledge
Management (KM)
techniques for
knowledge capture,
indexing and re-use
will be deployed
where needed and
applicable

including profiling
knowledge
repository
technologies for
preference
engineering

Table 1: WP6 SWS contribution objectives

1.4 Service-Oriented Architecture

The Service Oriented Architecture (SoA) represents an architectural style where the primary concept
is the use of loosely coupled, implementation-neutral services supporting a business process as

building blocks. Service consumers use the service by means of its published interface-based service
description without dependence on implementation, location or technology. The process building of

combining and sequencing services to provide more complex services is known as orchestration.

A SoA solution is built of a set of services orchestrated by clients or middleware to realize an end-to-
end (business) process. The openness of the architectural style also allows for ad-hoc service

consumers and flexible and dynamically re-configurable processes. The World Wide Web Consortium
(W3C) defines SoA as “A set of components which can be invoked, and whose interface descriptions

can be published and discovered”. No universally agreed definition is available, but the term is
generally considered to imply that application functionality is provided and consumed as sets of

services which can be published, discovered and accessed and are loosely coupled as well as

implementation and technology neutral.

SoA encourages loose coupling among the interacting software systems. A service is used only via

the published service description and the service consumer does not address a specific
implementation or deployed instance of the service. Changes to the implementation do not affect

the service consumer and the service consumer can change the instance of the service that is used

(changing location or implementation of the service, e.g. when two service providers offer the same
service) without modifying the client application.

By abstracting the service from the implementation, the developer will not need to consider which
technique was used to implement the service. Parallel implementations of the service may be

available, and the actual version used is transparent to the consumer.

The use of standardized protocols for publishing, discovering and accessing services allows the

service to be provided on any platform that can implement these protocols. In orchestrating a SoA

solution, services that are (internally) implemented with different languages, architectural styles and
on platforms from different vendors, can be used together transparently.

Any technology that can be used to implement loosely coupled, implementation independent
services could be used to realize SOA. However, most discussions and actual implementations of SoA

use Web Service technologies as the way of publishing, discovering and accessing a service. Web

Service technologies include SOAP and XML for exchanging messages containing structured and
typed information to access services, to publish and describe a service and UDDI for dynamically

finding and invoking web services. On top of these now well-established protocols, a host of new
protocols have been developed to support orchestration of services and describe the semantics of

services e.g. OWL-S builds on OWL to define a core set of mark-up language constructs for

describing the properties and capabilities of Web services, WS-Coordination provides a method of
defining and supporting workflows and business processes. WS-Coordination is an extensible

framework for providing protocols that coordinate the actions of individual web services in
distributed applications to provide a business process defined in BPEL. WSRF (Web Services

Resource Framework) defines an open framework for modelling and accessing stateful resources
using Web services.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 10 of 78 2008-08-25

The principles of SoA and loosely coupled, flexible and dynamically configured systems harmonizes
well with Hydra objectives (e.g. with the use of an organisational memory) and the abundance of

proposed standards and technologies will be evaluated and tested for applications in Hydra.

All of the software components comprising Hydra will be integrated in a Service Oriented
Architecture (SoA), which will provide, among other things, interoperability. The Hydra middleware

thus also becomes the link between web services and devices. Interoperability, which here is taken
as the capability of components of Hydra to talk to each other no matter which is the technology

used to implement them or their physical location, is achieved by means of the usage of many
specifications around the web services world, including XML, SOAP, WSDL, XML Schema, WS-

Security, WS-Addressing and several others. The key point that makes these standards interoperable

is that they are platform-agnostic, but more important, that most industry player support most of
them.

To summarise, the main purpose of the Service-oriented Architecture in Hydra is to provide
interoperability between devices at a syntactic level.

1.5 Semantic Web Overview

Tim Berners-Lee defined the scope as „Expressing Meaning‟ and „Knowledge Representation‟ and the
basic building blocks of the Semantic Web with „Ontologies‟ and „Agents‟ which would bring an

„Evolution of Knowledge‟ [3]. Though the vision of Berners-Lee has not been fulfilled a lot of

research went into the two building blocks he mentioned namely Ontologies and Agents.

Web services have also seen a tremendous amount of research in various areas like service

description, service provision and service discovery. A lot of standardization efforts are going on at
the moment trying to harmonize the access to and usage of web services like the WS-* standards

from W3C. At the beginning web services were replacing proprietary middleware to invoke methods

across networked machines e.g. CORBA or RMI and do so with a standardize protocol like SOAP
(Simple Object Access Protocol) [1].

It was used in EAI (Enterprise Application Integration) and besides the SOAP protocol a language for
service description named WSDL (Web Service Description Language) and a registry for looking up

available web services called UDDI (Universal Description, Discovery and Integration) were
developed. The basic architecture of the components is shown in Figure 1 [op. cit.]:

Figure 1: Basic web service architecture

The basic web service approach has one notable limitation in that the service descriptions are not
machine-understandable. The format is standardized (WSDL) but it lacks a well-defined semantics.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 11 of 78 2008-08-25

In the area of the Semantic Web a lot of research work was done on ontologies and their usage as
content markup languages. In the beginning there was OIL [6] and DAML [7] which eventually

evolved into OWL (Web Ontology Language) [20] and OWL-S [18]. McIllraith et al. first described

the usage of ontologies together with web services to create semantic web services [21]. Semantic
web services are web services which are semantically described so that the semantic markup of

service descriptions becomes machine understandable. This helps in the automatic service discovery
to find a web service that offers a specific functionality and also matches a certain set of properties,

in automatic service execution and automatic service composition in that one can specify a set of
properties and an agent could consume one particular semantic web service or automatically

combine several available web services to execute the needed functionality.

While a lot of work has been done in all single areas it is still problematic to combine those new
technologies to form a working system though. This has a lot to do with standards that are created

from different working groups but that are somehow addressing the same area but are incompatible
to each other like the WSMO [16] vs. the OWL-S approach. Therefore it is impossible to identify one

standard that one could follow and be sure that this is the “right” approach. Moreover projects like

WSMO are still being actively developed and lack therefore support for the complete process. WSMO
for example has specified a so called web service execution environment (WSEX) but this is still far

from being ready for production systems.

Figure 2: Basic service oriented architecture [8]

The migration path from the standard web service infrastructure to semantically enhanced web

services is also still in flux. Figure 2 shows a basic web service architecture in which the steps

Publish and Find needs to be semantically enriched.

1.6 Semantic Web Services for Devices

The main contribution of Hydra to the Semantic Web is to bring semantic web technologies down to

the device level, i.e. each device can act as a semantic web service accessible by other devices,
users and software applications. This work is carried out as part of Task 6.5 “SoA and Semantic Web

Services for Devices”, and this deliverable complements the deliverable D6.2 “MDA Design
Document” [9].

1.6.1 Ontology-based Device and Service Descriptions

Putting semantic web services on devices is a question of merging two different perspectives – a
device-oriented perspective which arises from technologies like UPnP (Universal Plug and Play) with

a service-oriented perspective that stems from semantic web service technology. Hydra models

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 12 of 78 2008-08-25

services separate from devices, by representing them in two related models represented by the
Device Ontology (DO) and the Service Ontology (SO).

As a tool for modelling Hydra services, it is possible to use both OWL-S and WSMO technology,

which enable to solve all of the tasks that have to be solved by the second iteration of Hydra
services. Both approaches provide an acceptable solution. OWL-S as the well known standard seems

to be more mature in various aspects, whereas WSMO provides more complete conceptual model,
but its specification and implementation is still incomplete and in development. In addition, since the

first Hydra iteration is characterised by the tasks of service discovery, explicit composition and
invocation, both standards seem to be overly complex for the needs of Hydra.

When searching for simple and practical solution, OWL-S or WSMO approach should be used mainly

in cases, when there is the need for modelling of such a complex issues as:

 reasoning with the service preconditions and effects or

 service orchestration with ability of searching the services in the work-flow on the fly

For the first prototype of Hydra services we will use the SAWSDL standard [30] annotated to the

custom service model. The development of service ontology must take into account the future

extension of Hydra requirements on the services. It should also be possible to completely substitute
the custom Hydra service ontology with selected SWS standard, such as OWL-S or WSMO.

1.6.2 Semantic Discovery of Networked Devices and Services

An important aspect of all ambient intelligence applications is for users, applications and devices to

quickly and easily discover devices that are available in there vicinity. The first issue is to discover
the existence of a device that one can communicate with, the second issue is to discover what type

of services the device offers and thirdly to discover how to access and execute these services.

One of the contributions from Hydra is to merge UPnP (Universal Plug and Play) discovery of
networked devices with semantic services, allowing UPnP-enabled devices to act as semantic web

services towards the network.

The UPnP architecture offers pervasive peer-to-peer network connectivity of PCs, intelligent

appliances and wireless devices. The UPnP architecture is a distributed, open networking

architecture that uses TCP/IP and HTTP. It enables seamless proximity networking in addition to
data transfer between networked devices at home, in the office and everywhere in between.

It enables data communication between any two devices under the command of any control device
in the network. The UPnP architecture supports zero-configuration, invisible networking and

automatic discovery for a breadth of device categories from a wide range of vendors. Devices can

dynamically join a network, obtain IP addresses, announce their names, convey their capabilities
upon request, and learn about the presence and capabilities of other devices. DHCP and DNS servers

are optional. A device can leave a network smoothly and automatically without leaving any
unwanted state information behind.

The goal of service discovery task is to find a suitable service provided by specific device (or device
type) in accordance to defined requirements. UDDI is an industry initiative that is becoming the de

facto standard repository for web services. But it provides a weak discovery mechanism which does

not allow the discovery of services based on the functionality the service provides. Therefore an
OWL-S/UDDI matchmaker is needed that provides the capability to search for web services based on

their functionality [24]. Such a matchmaker needs a mapping between concepts from the ontology
(in this case OWL-S) and UDDI which is shown in Figure 3[23] [18].

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 13 of 78 2008-08-25

contactInformation

name

title

phone

fax

email

physicalAddress

webURL

serviceName

textDescription

hasProcess

serviceCategory

serviceParameter

qualityRating

input

output

precondition

effects

businessKey

name

description

categoryBag

hasProcess_TModel

serviceCategory _TModel

serviceParameter _TModel

qualityRating_TModel

input_TModel

output_TModel

precondition_TModel

effect_TModel

bindingTemplates

Business Entity

Name

Contact

person name

phone

email

address

discovery URLs

business Key

Business ServiceOWL-S Profile

Figure 3: UDDI matching to OWL-S

There are existing tools and matchmakers supporting the service discovery for both OWL-S and
WSMO standards (description of this tools is out of scope of this deliverable), which may be used for

particular approach. The issue, which should be especially addressed, is the support of using the
IOPEs (Input, Output, Preconditions and Effects) for service discovery. In the real applications,

IOPEs are not used properly, because the reasoning with preconditions and effects in real-time

discovery process is very time expensive. Usually, the potential preconditions and effects are skipped
or pre-computed.

1.6.3 Lightweight Orchestration of Device Services

In a service oriented architecture (SOA) some of the key aspects are loose coupling of services,
implementation neutrality, flexible configurability and coarse granularity. If a service designer has

those goals in mind while defining the scope of one service it will usually be a rather low-level
service from a functionality point of view. In order to create higher-level services one has to define

in which order other services will be consumed and then find and execute them.

So within a SOA service discovery is only the starting point. To create useful applications on the SOA

architecture style one has to orchestrate services to support workflows that were previously defined

as well as creating composite services out of existing lower level.

In the first prototype of Hydra complex services were created by static service composition. The

orchestration of a sequence of services can be done by several technologies. WS-BPEL is the
extension of BPEL (Business Process Execution Language) to web services but is recognized to be

rather complex and most probably not suited to the requirements of Hydra

Existing orchestration approaches appear to be overly complex and resource intensive for use in
Hydra. Therefore we will research a more lightweight approach to be used. During this iteration we

will make various experiments with different approaches and then in later iterations design such a
custom orchestration language (“Device Orchestration Language Light”, DOLL).

1.6.4 Ontology-driven Invocation of Services

Semantic Web Services frameworks like OWL-S and WSMO combine semantic descriptions of Web

service capabilities, inputs, outputs and behavior with the syntactic interface descriptions in WSDL

and XML Schema. The glue between the semantic and syntactic description layers is called
grounding [17].

Device Services are invoked using a grounding model, which specifies how to communicate with a
particular service. The Hydra approach to service grounding and invocation is based on the

combination of WSDL semantic annotation with grounding references in the ontology. The device

ontology holds descriptions of devices and services. The discovery, mapping and reasoning done to
find suitable services to accomplish a certain task is performed using the ontology. The WSDL

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 14 of 78 2008-08-25

grounding for the semantic service is referenced in the ontology, so that the web service on any
device that can be found in the ontology also can be called without using information from the

device (although the device could provide its own WSDL).

Hydra is also allowing service grounding directly to UPnP1.

1.6.5 Secure Semantic Web Services for Devices

Security is an important issue when it comes to web services - whether semantic or not. Although
web services are re-usable and accessible components by design, not every service is thought to be

used by everybody. Access to a service may rather depend on the identity of the requester, of
certain attributes or even of the current context. As web services themselves do not support any

kind of access control, such mechanisms have to be provided in addition to Hydra‟s services. Even

other security requirements like confidentiality, non-repudiation, integrity or authenticity are not an
integral part of web services and have to be specified by additional mechanisms.

1.6.6 Automatic Generation of SWS proxies for Devices

To enable the Hydra middleware and consequently the Hydra developer to view and use all devices

and services in a heterogeneous fashion, automatic generation of semantic web service proxies for

devices will be necessary. Some devices will provide their own semantic information with hooks into
the service and device ontologies while the simpler, non-Hydra enabled devices will have to be

identified in the device ontology and their semantic information added to the description in a
semantic web service proxy. For developers, some additional support for domain concepts will also

be generated by the SDK.

1.6.7 Caching Principles

While the semantic technologies in combination with the service oriented architecture of Hydra,

enhance the functionality and usability of the Hydra middleware, the quality of service must also be
attained to sufficient levels. This may pertain to the accessibility of both devices and device

services. As many Hydra applications will be designed for networked and distributed environments,
it is foreseen that caching techniques could be exploited on several levels in the Hydra architecture

to improve accessibility and performance of device and service use.

Caching issues are not considered in this iteration of the Hydra development cycle and will therefore
not be further discussed in this document.

1 UPnP – Universal Plug and Play: http://www.upnp.org/

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 15 of 78 2008-08-25

2. Executive Summary

This workpackage applies Service Oriented and Model Driven Architecture techniques to AmI

systems. All of the devices and services comprising a Hydra network will be integrated in a Service
Oriented Architecture (SoA), which will provide, among other things, interoperability. The Hydra
middleware thus also becomes the link between web services and devices. Interoperability, which

here is taken as the capability of components of Hydra to talk to each other no matter which is the
technology used to implement them or their physical location, is achieved by means of the usage of

many specifications in the context of the web services world, including XML, SOAP, WSDL, XML

Schema, WS-Security, WS-Addressing and several others. To summarise, the main purpose of the
Service-Oriented Architecture in Hydra is to provide interoperability between devices at a syntactic
level.

Hydra aims to interconnect devices, people, terminals, buildings, etc. As mentioned above, the

Service-Oriented Architecture and its related standards provide interoperability at a syntactic level.
However, in Hydra we also aim at providing interoperability at a semantic level. Thus, the Hydra

middleware must also model services offered by different devices from an applications point of view.

A main contribution of this workpackage to is to bring semantic web technologies down to the device
level, i.e., each device can act as a semantic web service accessible by other devices, users and

software application. This will be done in close cooperation with WP4 which are investigating
techniques for embedding web services into devices. In this WP we are concerned with the design of

semantic web services and automating the generation of web services code for devices based on

meta data and ontology descriptions.

In order to cope with the huge variety of capabilities of the devices to be integrated in Hydra, two

broad options can be considered: a) to force every device to be compliant to some set of more or
less flexible interfaces, or b) to have Hydra middle layer provide adaptation to whatever interface

the devices offer.

Since choice a) will probably not be applicable neither to the present nor to the future world, Hydra

will opt for choice b), so it will try to be able to adapt to the variety of interfaces, information and

operations that devices offer. And given the vast amount of devices, the only viable option to
address this issue is to try to do it in some automatic way.

In order to achieve this, Hydra aims to be able to describe the capabilities of the devices
(ontologies) in such way that an automatic agent can understand these capabilities and use them.

Once the semantics describing the model of a device has been found, then its device capabilities

could be accessed.

Hydra‟s technological innovations in semantic web services design will be in the following areas:

 Ontology-based Device and Service Descriptions

 Semantic Discovery and Advertising of Networked Devices and their Services

 Lightweight orchestration and composition of Device Services

 Ontology-driven Invocation and Execution of Device Services

 Secure Semantic Web Services for Devices

 Automatic generation of SWS device proxies

 Caching principles

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 16 of 78 2008-08-25

3. Standards for Semantic Web Services

In this chapter we describe, analyze and compare the most important standards that exist for

Semantic Web Services.

3.1 OWL Web Ontology Language for Services (OWL-S)

OWL-S is the OWL ontology for semantic description of the Web Services [29]. The structure of the

OWL-S consists of a service profile for service discovering, a process model which supports

composition of services, and a service grounding, which associate profile and process concepts with
the underlying service interfaces.

Service profile has functional and nonfunctional properties. Functional properties describe the inputs,
outputs, preconditions and effects of the service (IOPEs). The nonfunctional properties describe the

semi-structured information intended for human users for service discovery, e.g. service name,

description and parameters which incorporates further requirements on the service capabilities (e.g.
security, quality-of-service and geographical scope).

Service model specifies how to interoperate with the service. The service is viewed as a process
which defines the functional properties of the service (IOPEs), together with details of its constituent

processes (if the service is a composite service). The service model functional properties can be

shared with the service profile.

OWL-S distinguishes between atomic, simple, and composite processes. OWL-S atomic processes

can be invoked, have no sub-processes, and are executed in a single step from the requester's point
of view. The simple processes are used as elements of abstraction, they are viewed as executed in a

single step, but they are not invocable. Composite processes consist of the simple processes and
define their work-flows using control constructs, such a sequence, split, if-then-else or iterate.

Service grounding enables the execution of the Web Service by binding the abstract concepts of the

OWL-S profile and process model to concrete messages and protocols. Although different message
specifications are supported by OWL-S, the widely accepted WSDL is preferred.

3.2 Web Service Modelling Ontology (WSMO)

The Web Service Modeling Ontology (WSMO) [33] is a conceptual model for describing semantic
Web Services. WSMO consists of four major components: ontologies, goals, Web Services and

mediators.

Ontologies provide the formal semantics to the information used by all other components. WSMO

specifies the following constituents as part of the description of ontology: concepts, relations,

functions, axioms, and instances of concepts and relations, as well as non-functional properties,
imported ontologies, and used mediators. The latter allows the interconnection of different

ontologies by using mediators that solve terminology mismatches.

Goals specify objectives that a client might have when consulting a Web Service, i.e. functionalities

that a Web Service should provide from the user perspective. In WSMO a goal is characterized by a

set of non-functional properties, imported ontologies, used mediators, the requested capability and
the requested interface (see the Web Services description).

A Web Service description in WSMO consists of five sub-components: non-functional properties,
imported ontologies, used mediators, a capability and interfaces.

The capability of a Web Service defines its functionality in terms of preconditions, postconditions,
assumptions and effects. A capability (therefore a Web Service) may be linked to certain goals that

are solved by the Web Service via mediators. Preconditions, assumptions, postconditions and effects

are expressed through a set of axioms and a set of shared all-quantified variables.

The interface of a Web Service provides further information on how the functionality of the Web

Service is achieved. It describes the behavior of the service from the client's point of view (service

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 17 of 78 2008-08-25

choreography) and how the overall functionality of the service is achieved in terms of cooperation
with the other services (service orchestration).

A choreography description consists of the states represented by the ontology, and the if-then rules

that specify (guarded) transitions between states. The ontology that represents the states provides
the vocabulary of the transition rules and contains the set of instances that change their values from

one state to the other. The concepts of an ontology used for representing a state may have
specified the grounding mechanism which binds service description to the concrete message

specification (e.g. WSDL).

Like for the choreography, an orchestration description consists of the states and guarded

transitions. In extension to the choreography, in an orchestration can also appear transition rules

that have as postcondition the invocation of a mediator that links the orchestration with the
choreography of a required Web Service.

Mediators describe elements that aim to overcome structural, semantic or conceptual mismatches
that appear between the different components that build up a WSMO description. Currently the

specification covers four different types of mediators:

 OOMediators - import the target ontology into the source ontology by resolving all the
representation mismatches between the source and the target;

 GGMediators - connect goals that are in a relation of refinement allowing the definition of
sub-goal hierarchies and resolve mismatches between those;

 WGMediators - links a goal to a Web Service via its choreography interface meaning that the
Web Service fulfills the goal; or links a Web Service to a goal via its orchestration interface

meaning that the Web Service needs this goal to be resolved in order to fulfill the

functionality;

 WWMediators - connect several Web Services for collaboration.

WSMO is formalized using the Web Service Modeling Language (WSML, [32]) which is based on
description logic, first-order logic and logic programming formalisms. WSML consists of a number of

variants based on these different logical formalisms, namely:

 WSML-Core is based on the intersection of Description logic and Horn logic;

 WSML-DL extends WSML-Core to an expressive Description logic and offers similar

expressiveness to OWL-DL;

 WSML-Flight is an extension in the direction of Logic programming and incorporates a rule

language, while still allowing efficient reasoning;

 WSML-Rule extends WSML-Flight to Logic programming language, which does not require
rule safety and allows to use function symbols; and

 WSML-Full unifies all WSML variants under a common first-order umbrella with non-
monotonic extensions.

3.3 Web Service Semantics (WSDL-S)

WSDL-S is a small set of proposed extensions to Web Service Description Language (WSDL) by
which semantic annotations may be associated with WSDL elements.

WSDL-S defines URI reference mechanisms to the interface, operation and message WSDL
constructs to point to the semantic annotations defined in the externalized domain models. WSDL-S

defines following extensibility elements and attributes:

 modelReference element - allows for one-to-one associations of WSDL input and output type
schema elements to the concepts in a semantic model;

 schemaMapping attribute - allows for many-to-many associations of WSDL input and output
complex type schema elements to the concepts in a semantic model. It can point to a

transformation (for example XSLT), from XML data to the external ontological data in

RDF/OWL or in WSML;

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 18 of 78 2008-08-25

 precondition and effect elements - are used on WSDL interface operations to specify
conditions that must hold before and after the operation is invoked. The conditions can be

specified directly as a expression with format defined by the semantic language or by

reference to the semantic model;

 category element - provides a pointer to some taxonomy category. It can be used on a

WSDL interface and is intended to be used for taxonomy-based discovery.

3.4 Semantic Annotations for WSDL and XML Schema (SAWSDL)

Semantic Annotations for WSDL and XML Schema is a W3C recommendation [30] that defines how

to add semantic annotations to Web Service Description Language (WSDL) and to XML Schema. It
defines the extension attributes that can be applied to elements in both WSDL and XML Schema in

order to annotate WSDL interfaces, operations and their input and output messages. SAWSDL is the
successor of WSDL-S often considered to be the first step towards standardization in the area of

Semantic Web Services.

Semantic annotations in WSDL and XML Schema are used for these purposes:

 associating WSDL interfaces with some taxonomical categories to help semantic Web service

discovery,

 describing the purpose or applicability of WSDL operations to help discovery or composition,

 linking and mapping inputs, outputs and faults of WSDL operations to semantic concepts to

help facilitate mediation and service discovery and composition.

According to the Semantic Annotations for WSDL Working Group

(http://www.w3.org/2002/ws/sawsdl/), the key design principles for SAWSDL are:

 The specification enables semantic annotations for Web services using and building on the

existing extensibility framework of WSDL.

 It is agnostic to semantic representation languages.

 It enables semantic annotations for Web services not only for discovering Web services but

also for invoking them.

SAWSDL can be split in two extension components: (1) An extension attribute, named

modelReference, to specify the association between a WSDL component and a concept in some
semantic model and (2) two extension attributes, named liftingSchemaMapping and

loweringSchemaMapping, that are added to XML Schema element declarations and type definitions

for specifying mappings between semantic data and XML. These two components are described in
the following text.

Model reference is the first major part of SAWSDL represented by the attribute called
modelReference. The value of the attribute is a list of URIs that reference concepts in an external

semantic model. SAWSDL defines how model references can be used on WSDL interfaces,

operations, faults, and on XML Schema element declarations or type definitions.

On a WSDL interface, a model reference can provide a classification of the interface, for example by

pointing into a products and services taxonomy. Model references on a WSDL operation define what
the operation does. This can be done with a direct reference to a verb concept or to a logical axiom

or by specifying the operation's preconditions and effects. On a WSDL fault, model references define
what kind of failure the fault means, so that the fault can be handled more appropriately by the

client. Model references on XML Schema element declarations and type definitions define the

semantics of the inputs or outputs of WSDL operations.

In general, model references can have many uses, and indeed, SAWSDL does not limit the

applicability of the attribute.

Schema mappings transform between XML data described with XML Schema and semantic data

described by a semantic model. Mappings can be used for example to support invocation of a Web

service from a client that works natively with semantic data. SAWSDL defines two extension

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 19 of 78 2008-08-25

attributes: liftingSchemaMapping and lowerSchemaMapping. These attributes are used to point from
a schema element declaration or type definition to a mapping that specifies (in any suitable mapping

language, e.g. XSLT) how data is transformed from XML to the semantic level (lifting) or back

(lowering).

3.5 Comparison and relation of SWS standards

SWS standards can, according to the modelling approach, generally be divided into two categories:

(1) standards which cover the semantic description of web services in their own specification (OWL-
S, WSMO) and the standards which add the semantic information using the annotations to external

knowledge sources (WSDL-S/SAWSDL approaches). This chapter describes the basic differences
between OWL-S and WSMO. As the both approaches primarily use the WSDL as the base for service

grounding, the relationship of these standards to WSDL-S/SAWSDL will be described (as the
SAWSDL is the WSLD-S successor, description will be focused mainly on SAWSDL).

3.5.1 Comparison of OWL-S and WSMO

WSMO and OWL-S are the two major efforts whose purpose is to specify semantic information for
Web services in order to enable automatic service discovery, composition and execution. However,

there are substantial differences between these approaches [26].

OWL-S uses four different ontologies to describe the service. The upper Service ontology refers to:

Profile, Service Model and Grounding ontologies. WSMO is based on the Web Service Modelling

Framework (WSMF), which divides the service description into four components: Ontologies, Web
Services, Goals and Mediators. The first significant difference between these approaches is that

OWL-S does not exactly separate what a user requires from what the service provides. The OWL-S
Profile is used both for service advertising and for discovery. In WSMO, a Goal defines, what the

user needs and the Web Service specifies what the service provides using its capabilities.

The non-functional properties in an OWL-S Profile (such as human-readable service name,
description, etc.) are not explicitly based on standard meta-data specifications. WSMO tends to use

the common vocabularies such as the Dublin Core element set. Moreover, the WSMO enables to use
the non-functional properties in any element, in OWL-S is this restricted only to the service Profile.

In the OWL-S Service Model, there is no explicit difference between the orchestration and the
choreography and there is only one Service Model for each service, thus there is only one way to

interact with the service. In WSMO, the choreography and orchestration are defined in the interface

of the Web Service. WSMO also enables the use of multiple interfaces for each service.

OWL-S supports the logical expressions defined in the SWRL2 and KIF3 languages, but the

interaction between the inputs and outputs specified as OWL classes, and the logical expressions,
are not clear enough. Various kinds of mediation is required to create the relation between various

heterogeneous resources. OWL-S does not explicitly handle the issue of mediation, it is considered

to be handled by the underlying Web Service infrastructure. WSMO explicitly defines the mediation
in the conceptual model.

To summarize, OWL-S and WSMO are very similar, although with some differences in the approach
they take to achieve their goals. OWL-S seems to be more mature in certain aspects, including the

definition of process model and grounding specifications. However, WSMO provides a more complete

conceptual model as it addresses aspects such as goals and mediators, but it has to further define
some open aspects to be completely usable in real applications.

3.5.2 Relation of OWL-S and WSMO to SAWSDL

SAWSDL provides a standard means by which WSDL documents can be related to semantic

descriptions, such as those provided by OWL-S and WSMO. As a standard, SAWSDL provides a

2 Semantic Web Rule Language: http://www.w3.org/Submission/SWRL/
3 Knowledge Interchange Format: http://www-ksl.stanford.edu/knowledge-sharing/kif/

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 20 of 78 2008-08-25

common ground for the various ongoing efforts toward SWS frameworks. In both cases, the
utilization of SAWSDL description into WSMO and OWL-S is still more on the level of suggestions

than definitions, which require the further investigation.

The guidelines and suggestions regarding the use of OWL-S in conjunction with SAWSDL from the
SAWSDL perspective is provided by [19]. It is explained what OWL-S constructs are appropriate for

use with the various SAWSDL annotations. These explanations are provided with a view to
supporting WSDL users and WSDL tool vendors in achieving the objectives that are associated with

SAWSDL. The recommendations can be briefly summarized as follows:

 The WSDL operation can refer to an OWL-S atomic or composite process.

 The WSDL interface should refer to an instance of an OWL-S profile class (i.e., Profile or a
subclass of Profile). If a particular instance is not available, a profile class can serve as the

referent.

 The WSDL fault should refer to a conditional effect of an OWL-S process – the process that
corresponds to the operation for which the fault is declared.

 Model references in XML Schema should refer to OWL constructs, and can do so
independently of OWL-S.

 WSDL input and output elements should be used to relate those elements to inputs and
outputs of an OWL-S process – the process that corresponds to the operation for which the
input or output element is declared.

 Schema mapping (lifting and lowering) annotations can refer to XSLT scripts.

The approach showing WSMO grounding using SAWSDL, linking from WSDL components to WSMO

is described in [16]. Grounding using SAWSDL is described in the terms of WSMO choreography,
which specifies when certain data can be sent or received and the grounding specifies how exactly it

can be sent or received. To ground a WSMO choreography, it is needed to put model references on

the element declarations that are inputs or outputs of WSDL operations in very similar way as in the
case OWL-S:

 An element that is an input message to a WSDL operation should contain a model reference
to an "in" or "shared" concept in a WSMO choreography, and an output message element
should have a model reference to an "out" or "shared" concept.

 Additionally, the liftingSchemaMapping and loweringSchemaMapping attributes should refer
to the data grounding transformations (e.g. XSLT scripts). Any SAWSDL schema mapping
annotations can be used for pointing to data grounding.

 The WSDL service element should refer to a WSMO web service

Using SAWSDL for WSMO grounding brings both benefits and drawbacks over the WSMO-based

grounding, therefore both approaches can be seen as the alternatives. The main possible benefits
and drawbacks can be briefly summarized as follows:

 The SAWSDL-based grounding improves the relation of WSMO to Web services standards,

making it easier for Web service users to take advantage of semantic descriptions.

 SAWSDL provides schema mapping annotations to attach lifting and lowering

transformations which are not yet specified in the WSMO-based grounding.

SAWSDL-based grounding links are in a WSDL description; however a WSMO semantic execution

environment is primarily based on WSMO, where the grounding links are readily available whenever
the execution environment needs them. With SAWSDL-based grounding, the grounding information

needs to be looked up by looking through all the known WSDL descriptions.

For both, OWL-S and WSMO standards, the SAWSDL-based grounding improves the relation of

OWL-S and WSMO to Web services standards, making it easier for Web service users to take the
advantage of semantic descriptions. The SAWSDL-based grounding also allows the partial
understanding of the semantic description. For instance, the links from XML Schema element

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 21 of 78 2008-08-25

declarations to ontology concepts may be not only useful for discovery or execution of services, but
can also be used by human-oriented tools to enhance the manipulation of the schema with semantic

information available from the ontology.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 22 of 78 2008-08-25

4. Hydra approach to Semantic Web Services for Devices

In this chapter we will explain our approach to achieve semantic interoperability between devices

and their services. We will start by giving a short overview of the ideas behind the semantic MDA of

Hydra, and then briefly describe an example scenario. After that we will then discuss the approach
we are taking with regards to:

 Device and Service Descriptions

 Discovery and Advertising of Networked Devices and their Services

 Orchestration, composition and choreography of Device Services

 Invocation and Execution of Device Services

 Security

 Automatic generation of SWS device proxies

For each of these areas we will discuss different alternatives and explain the choices and decisions
we have made.

4.1 Overview of the Semantic MDA of Hydra

The semantic model-driven architecture of Hydra (SeMDA) is based on the application of ontologies
and semantic web technologies to support the design of device-oriented networked applications and

is also intended as a run-time resource in the execution of device services. The SeMDA is explained

in detail in deliverable D6.2 “MDA Design Document”, here we will only discuss the aspects relevant
for Semantic Web Services.

The basic idea behind the Hydra Semantic MDA is to differentiate between the physical devices and
the application´s view of the device. We introduce the concept of Semantic Devices. The physical

devices offers a set of services, a lamp might offer “on/off” and “dimming” as two services while a
pump might offer “increase flow” and “get water temperature” as two services.

The services offered by the physical devices have been designed independently of particular

applications in which the device might be used. A semantic device on the other hand represents
what the particular application would like to have. For instance, when we are designing the lighting

system for a building it would be more appropriate to model the application as working with a logical
lighting system that provides services like “working light”, “presentation light”, and “comfort light”

rather than working with a set of independent lamps that can be turned on/off. These logical devices

might in fact consist of aggregates of physical devices, and use different devices to deliver the
service depending on the situation. The service “Working light” might be achieved during daytime by

pulling up the blind (if it is down) and during evening by turning of a lamp (blind and lamp being
Hydra devices). We call these logical aggregates of devices and their services for Semantic Devices.

Semantic Devices should be seen as a programming concept. The application programmer designs

and programs his application using semantic devices. Figure 4 below illustrates the concept. The
semantic device “Heating System” consist of three physical devices: a pump that circulates the

water, a thermometer that delivers the temperature and a light that flashes when something is
wrong.

The developer will only have to use the services offered by the semantic device “Heating System”,
for instances “Keep temperature:20 degrees Celsius” and “Set warning level:17 degrees Celsius”,

and does not need to know the underlying implementation of this particular heating system.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 23 of 78 2008-08-25

Light 1 Light 2Pump

Heating System Comfort Lighting Working Light

Home Automation

Home Automation System Application

Thermometer Window Blinds

Network Layer

Semantic Device Layer

External applications

Pump Thermometer Light 1 Light 2 Window Blinds

Figure 4: Semantic Devices provide a high-level programming interface.

The Semantic Device concept is flexible and will support both static mappings as well as dynamic
mappings to physical devices.

Static mappings can be both 1-to-1 from a semantic device to a physical device or mappings that

allow composition.

 An example of a 1-to-1 mapping would be a “semantic pump” that is exposed with all its

services to the programmer.

 An example of a composed mapping is a semantic heating system that is mapped to three

different underlying devices – a pump, a thermometer and a digital lamp.

Static mappings will require knowledge about which devices exists in the runtime environment, for

instance the heating system mentioned above will require the existence of the three underlying

devices – pump, thermometer and lamp – in a building.

Dynamic mappings will allow semantic devices to be instantiated at runtime. Consider the heating

system above. We might define it as consisting of the following devices/services:

 A device that can circulate the water and increase its temperature

 A device that can measure and deliver temperature

 A device that can create an alarm/alert signal if temperature is out of range.

When such a device is entered into the runtime environment it will use service discovery to

instantiate itself and it will query the physical devices it discovers as to which can provide the
services/functions the semantic device requires. In this example the semantic device most probably

starts by finding a circulation pump.

But then it might find two different thermometers which both claims they can measure temperature.
The semantic device could then query about which of the thermometers can deliver the temperature

in Celsius, with what resolution and how often. In this case it might only be one of the
thermometers that meet the requirements. Finally the semantic device could search the network if

there is a physical device that can be used to generate an alarm if the temperature drops below a

threshold or increases to much. By some reasoning the semantic device can deduct that by flashing
the lamp repeatedly it can generate an alarm signal, so the lamp is included as part of the semantic

heating system.

The basic idea behind semantic devices is to hide all the underlying complexity of the mapping to,

discovery of and access to physical devices. The programmer just uses it as a normal object in his

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 24 of 78 2008-08-25

application focusing on solving the application‟s problems rather then the intrinsic of the physical
devices.

To achieve our vision of a Semantic Model Driven Architecture we have chosen to base our approach

on ontologies and related semantic technologies. In Hydra there are three major ontologies used -
Device Ontology, Security Ontology and Software Components Ontology.

The Hydra Device Ontology presents the basic high level concepts describing basic device related
information, which will be used in both development and run-time process. The device ontology is

divided into four interconnected modules:

 Basic device information and taxonomy

 Device malfunctions

 Device capabilities and state machine

 Device services

The content and structure of the Device Ontology as well as the others ontologies are described in

more detail in deliverable D6.2 “MDA Design Document”.

To summarise, there are two uses of the semantic MDA in Hydra. Firstly, it is relevant at design-
time, and it will support both device developers as well as application developers. Secondly, at run-

time any Hydra application is driven from the semantic MDA.

To realize our vision of the semantic MDA we not only need ontologies to represent information

regarding devices and services, but we also need solutions for exchanging and using metadata

regarding devices and services in runtime, i.e. we need to achieve semantic interoperability between
devices and applications. The purpose of this chapter is to describe how we intend to solve these

issues.

4.2 Example Scenario (Sending SMS)

Putting semantic web services on devices is a question of merging two different perspectives – a

device-oriented perspective which arises from technologies like UPnP (Universal Plug and Play) with
a service-oriented perspective that stems from semantic web service technology.

An example environment involving two Smartphones and a service for sending SMS messages will be
used to illustrate the use of device and service ontologies, grounding and service descriptions. The

devices both have a service for sending SMS messages that differ in syntax (different WSDL

descriptions), however, the services are semantically the same and should be represented with one
semantic service in the service ontology with two different groundings. This will illustrate the use of

different devices to implement the same service as well as switching between implementations of a
service based on availability.

This scenario resulted in some issues that have to be resolved:

 How do we represent that there are two groundings for the same semantic service. Will

there be two services in the service ontology or one with two groundings?

 How do the device service WSDLs (which can be retrieved from the device) reference the

semantic service description in the service ontology?

 For devices that have a fixed set of services, how do we reference the services that are

implemented?

 For devices that can implement any service (Smartphones, PDAs, personal computers), do

we represent this in the device ontology? How do we identify if a service provided by such a

device is in the service ontology)?

 What type of annotations is needed?

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 25 of 78 2008-08-25

 What is the most basic / primitive form of service description we will handle? e.g., a name/id

in the service ontology and a link to a WSDL exists? (i.e., no semantics except identification
and possible ISA relations).

4.3 Ontology-based Device and Service Descriptions

4.3.1 Requirements

ID Description Rationale

114 Semantic enabling of device web

services

Middleware should be able to attach semantic descriptions to

device web services based on device ontology.

389 Service browsing in device
ontology

It must be possible to view services as central building
blocks, thus an application developer should be able to

browse the device ontology from a service perspective, in

addition to a device perspective.

Table 2: Requirements on Device and Service Descriptions

Hydra models services separate from devices, by representing them in two related models

represented by the Device Ontology (DO) and the Service Ontology (SO). Certain devices are
obviously permanently bound to the services they provide (thermometer device – get temperature)

whereas others, e.g. of the SmartPDA device type, are not.

The Hydra Device Ontology is currently developed using the OWL language, see deliverable D6.2

“MDA Design Document”.

4.3.2 Implications of different SWS framework approaches on Hydra

4.3.2.1 OWL-S

Using the OWL-S approach to existing OWL ontology is quite straightforward. The OWL-S standard is

built as the extension of OWL language, thus there is no formal language compatibility problem.
OWL-S, from its definition, is capable to link required concepts to existing OWL classes describing

the taxonomy structures, inputs, outputs, preconditions and effects (IOPEs) of service and service

capabilities modeled in existing device ontology. Actual suggested service model described in D6.2
“MDA Design Document” deliverable is explicitly inspired by OWL-S approach and can be directly

substituted by OWL-S ontology describing the services linked to main device concept.

Unfortunately it quickly gets complicated to describe even simple services. The reason for this is of

course that OWL-S has been designed with complex business processes in mind and not specifically

for devices with rather simple functions, like turning lights on and off.

Below we show how our example SMS service would be described in OWL-S. The example below

expresses that if the phone number is OK the SMS is sent and if it is not OK then “notify error” is
called. As can be seen from the example this is rather complicated to express using OWL-S.

.

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xml:base="http://hydra.cnet.se/SMSService/SMSService_ProcessModel.owl#"

xmlns:dataflow="http://jamsci.servehttp.com/owlsedit/Dataflow.owl#"

xmlns:drs="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/drsonto

040112.owl#"

xmlns:owl="http://jamsci.servehttp.com/owlsedit/owl.rdf#"

xmlns:process="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owl

s11/Process.owl#"

xmlns:profile="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owl

s11/Profile.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 26 of 78 2008-08-25

xmlns:rdfs="http://jamsci.servehttp.com/owlsedit/rdf-schema.rdf#"

xmlns:service="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owl

s11/Service.owl#"

xmlns:swrl="http://jamsci.servehttp.com/owlsedit/swrl.owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<owl:Ontology rdf:about="">

<owl:versionInfo>Version 1.0</owl:versionInfo>

<rdfs:comment>Add Ontology Comment</rdfs:comment>

<owl:imports rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns"/>

<owl:imports rdf:resource="http://jamsci.servehttp.com/owlsedit/owl.rdf"/>

<owl:imports rdf:resource="http://jamsci.servehttp.com/owlsedit/rdf-

schema.rdf"/>

<owl:imports

rdf:resource="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlsedit

FYP/owls11/Service.owl"/>

<owl:imports

rdf:resource="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlsedit

FYP/owls11/Profile.owl"/>

<owl:imports

rdf:resource="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlsedit

FYP/owls11/Process.owl"/>

</owl:Ontology>

<process:ProcessModel rdf:ID="SMSService_ProcessModel">

<process:hasProcess rdf:resource="#SMSService_Composite"/>

<process:describes

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_Service#SMSService_S

ervice"/>

</process:ProcessModel>

<process:CompositeProcess rdf:ID="SMSService_Composite">

<process:composedOf>

<dataflow:TagBind>

<dataflow:tagBound>

<dataflow:TagNames>

<dataflow:tagName

rdf:datatype="http://jamsci.servehttp.com/owlsedit/XMLSchema.x

sd#string">condition_0</dataflow:tagName>

</dataflow:TagNames>

</dataflow:tagBound>

</dataflow:TagBind>

<process:Sequence rdf:ID="CheckNumber_SEQ_Head">

<process:components rdf:parseType="Collection">

<dataflow:Call>

<dataflow:callee

rdf:resource="#SMSPortType_CheckNumber"/>

<dataflow:tag

rdf:datatype="http://jamsci.servehttp.com/owlsedit/XMLS

chema.xsd#string">condition_0</dataflow:tag>

</dataflow:Call>

</process:components>

<dataflow:flow/>

</process:Sequence>

<process:If-Then-Else rdf:ID="IsValidNumber">

<process:ifCondition>

<drs:bound_vars rdf:parseType="Collection">

<swrl:Variable drs:name="condition_0" rdf:ID="condition_0">

<drs:declare

rdf:resource="#SMSPortType_CheckNumber_CheckNumberResul

t_OUT"/>

</swrl:Variable>

</drs:bound_vars>

<drs:Atomic_Formula>

<rdf:subject rdf:resource="#condition_0"/>

<rdf:predicate

rdf:resource="http://jamsci.servehttp.com/owlsedit/awol

.rdf#equalTo"/>

<rdf:object>

<drs:value

rdf:type="http://www.w3.org/2001/XMLSchema#boolean">tru

e</drs:value>

</rdf:object>

</drs:Atomic_Formula>

</process:ifCondition>

<process:then>

<process:Sequence rdf:ID="SendSMS_SEQ_Head">

<process:components rdf:parseType="Collection">

<dataflow:Call>

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 27 of 78 2008-08-25

<dataflow:callee rdf:resource="#SMSPortType_SendSMS"/>

</dataflow:Call>

</process:components>

<dataflow:flow/>

</process:Sequence>

</process:then>

<process:else>

<process:Sequence rdf:ID="NotifyError_SEQ_Head">

<process:components rdf:parseType="Collection">

<dataflow:Call>

<dataflow:callee

rdf:resource="#SMSPortType_NotifyError"/>

</dataflow:Call>

</process:components>

<dataflow:flow/>

</process:Sequence>

</process:else>

</process:If-Then-Else>

</process:composedOf>

</process:CompositeProcess>

<process:Input rdf:ID="SMSPortType_SendSMS_number_IN">

<process:parameterName>SMSPortType_SendSMS_number_IN</process:parameterName>

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</process:Input>

<process:Input rdf:ID="SMSPortType_SendSMS_message_IN">

<process:parameterName>SMSPortType_SendSMS_message_IN</process:parameterName>

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</process:Input>

<process:Output rdf:ID="SMSPortType_SendSMS_SendSMSResult_OUT">

<process:parameterName>SMSPortType_SendSMS_SendSMSResult_OUT</process:paramet

erName>

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

</process:Output>

<process:AtomicProcess rdf:ID="SMSPortType_SendSMS">

<process:hasInput rdf:resource="#SMSPortType_SendSMS_number_IN"/>

<process:hasInput rdf:resource="#SMSPortType_SendSMS_message_IN"/>

<process:hasResult>

<process:Result>

<process:hasOutput

rdf:resource="#SMSPortType_SendSMS_SendSMSResult_OUT"/>

</process:Result>

</process:hasResult>

</process:AtomicProcess>

<process:Input rdf:ID="SMSPortType_CheckNumber_number_IN">

<process:parameterName>SMSPortType_CheckNumber_number_IN</process:parameterNa

me>

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</process:Input>

<process:Output rdf:ID="SMSPortType_CheckNumber_CheckNumberResult_OUT">

<process:parameterName>SMSPortType_CheckNumber_CheckNumberResult_OUT</process

:parameterName>

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

</process:Output>

<process:AtomicProcess rdf:ID="SMSPortType_CheckNumber">

<process:hasInput rdf:resource="#SMSPortType_CheckNumber_number_IN"/>

<process:hasResult>

<process:Result>

<process:hasOutput

rdf:resource="#SMSPortType_CheckNumber_CheckNumberResult_OUT"/>

</process:Result>

</process:hasResult>

</process:AtomicProcess>

<process:Input rdf:ID="SMSPortType_NotifyError_number_IN">

<process:parameterName>SMSPortType_NotifyError_number_IN</process:parameterNa

me>

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</process:Input>

<process:Input rdf:ID="SMSPortType_NotifyError_message_IN">

<process:parameterName>SMSPortType_NotifyError_message_IN</process:parameterN

ame>

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 28 of 78 2008-08-25

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</process:Input>

<process:Output rdf:ID="SMSPortType_NotifyError_NotifyErrorResult_OUT">

<process:parameterName>SMSPortType_NotifyError_NotifyErrorResult_OUT</process

:parameterName>

<process:parameterType

rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

</process:Output>

<process:AtomicProcess rdf:ID="SMSPortType_NotifyError">

<process:hasInput rdf:resource="#SMSPortType_NotifyError_number_IN"/>

<process:hasInput rdf:resource="#SMSPortType_NotifyError_message_IN"/>

<process:hasResult>

<process:Result>

<process:hasOutput

rdf:resource="#SMSPortType_NotifyError_NotifyErrorResult_OUT"/

>

</process:Result>

</process:hasResult>

</process:AtomicProcess>

</rdf:RDF>

Figure 5: Service description using OWL-S

4.3.2.2 WSMO

The example below shows a service description using WSMO‟s language WSML.

fVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://www.example.org/ontologies/example#",

 dc _"http://purl.org/dc/elements/1.1#",

 foaf _"http://xmlns.com/foaf/0.1/",

 wsml _"http://www.wsmo.org/wsml/wsml-syntax#",

 loc _"http://www.wsmo.org/ontologies/location#",

 oo _"http://example.org/ooMediator#" }

/*****************************

* WEBSERVICE

*****************************/

webService _"http://example.org/Germany/BirthRegistration"

 nfp

 dc#title hasValue "Birth registration service for Germany"

 dc#type hasValue _"http://www.wsmo.org/TR/d2/v1.2/#services"

 wsml#version hasValue "$Revision: 1.1 $"

 endnfp

 importsOntology { _"http://www.example.org/ontologies/example",

 _"http://www.wsmo.org/ontologies/location" }

 capability _"http://example.org/Germany/BirthRegistration#cap1"

 sharedVariables ?child

 precondition

 nonFunctionalProperties

 dc#description hasValue "The input has to be boy or a girl

 with birthdate in the past and be born in Germany."

 endNonFunctionalProperties

 definedBy

 ?child memberOf Child

 and ?child[hasBirthdate hasValue ?brithdate]

 and wsml#dateLessThan(?birthdate,wsml#currentDate())

 and ?child[hasBirthplace hasValue ?location]

 and ?location[locatedIn hasValue oo#de]

 or (?child[hasParent hasValue ?parent]

 and?parent[hasCitizenship hasValue oo#de]) .

 assumption

 nonFunctionalProperties

 dc#description hasValue "The child is not dead"

 endNonFunctionalProperties

 definedBy

 ?child memberOf Child

 and naf ?child[hasObit hasValue ?x].

 effect

 nonFunctionalProperties

 dc#description hasValue "After the registration the

child

http://www.wsmo.org/wsml/wsml-syntax/wsml-rule
http://www.example.org/ontologies/example
http://purl.org/dc/elements/1.1
http://xmlns.com/foaf/0.1/
http://www.wsmo.org/wsml/wsml-syntax
http://www.wsmo.org/ontologies/location
http://example.org/ooMediator
http://www.wsmo.org/TR/d2/v1.2/#services
http://www.example.org/ontologies/example
http://www.wsmo.org/ontologies/location
http://example.org/Germany/BirthRegistration#cap1

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 29 of 78 2008-08-25

 is a German citizen"

 endNonFunctionalProperties

 definedBy

 ?child memberOf Child

 and ?child[hasCitizenship hasValue oo#de].

 interface _"http://example.org/Germany/BirthRegistration#iface1"

 choreography _"http://example.org/tobedone"

 orchestration _"http://example.org/tobedone"

Figure 6: Service description using WSMO

Using the WSMO approach to an existing OWL model has several drawbacks. Even though the
WSMO provides a really impressive conceptual model for service description, it uses the WSML

language. WSML enables to refer to existing OWL category, IOPEs and capability concepts, as WSML

requires only a URI for reference representation. It means, that WSML does not specify exactly, that
the concepts referred by URI have to be WSML concepts.

But, describing service semantics using WSML language may cause several implementation problems
mainly in the run-time caused mainly by WSML references to OWL concepts. As the WSMO

reasoning engine requires the model, which is fully described in WSML, there are two main
possibilities, how to adapt the references from WSML to OWL concepts:

 In run-time, the OWL ontology has to be transformed to a WSMO ontology to enable the

reasoner to take into account all referred concepts. The mapping approach is described for
example in [31]. As the content of device ontology containing referred concepts may change

also in run-time, this approach does not seem to be suitable, because the transformation
would have to be done after any change in device ontology content to actualize actual

WSML model used.

 The second possibility is the use of WSMO mediators for transformation of referred OWL
concepts to WSML at run-time. This approach seems to be more suitable, but, logically, can

be more time expensive.

4.3.2.3 SAWSDL

As the SAWSDL does not provide the service semantics description itself, this approach would

require development of a custom service model, which satisfies the Hydra specific requirements for

services. This model – the service ontology – should be linked to the device ontology. SAWSDL
semantic annotations should be linked to particular service ontology concepts.

Below is an example of a WSDL file for our example SMS service that has been annotated using SA-
WSDL.

<?xml version="1.0" ?>

<definitions name="SMSService"

targetNamespace="http://Hydra.cnet.se/SMSService.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://Hydra.cnet.se/SMSService.wsdl"

xmlns:sawsdl="http://www.w3.org/ns/sawsdl">

<message name="SendSMSSoapIn">

<part name="number" type="xsd:string"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Teleph

oneNumber"

sawsdl:liftingSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService/

StringToTelephoneNumber.lifting.xslt"

sawsdl:loweringSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService

#TelephoneNumberToString.lowering"/>

 <part name="message" type="xsd:string" />

</message>

<message name="SendSMSSoapOut">

 <part name="SendSMSResult" type="xsd:boolean"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Operat

ionSuccessful"/>

</message>

<message name="CheckNumberSoapIn">

http://example.org/Germany/BirthRegistration#iface1
http://example.org/tobedone
http://example.org/tobedone

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 30 of 78 2008-08-25

 <part name="number" type="xsd:string"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Teleph

oneNumber"

sawsdl:liftingSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService/

StringToTelephoneNumber.lifting.xslt"

sawsdl:loweringSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService

#TelephoneNumberToString.lowering"/>

</message>

<message name="CheckNumberSoapOut">

 <part name="CheckNumberResult" type="xsd:boolean"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Operat

ionSuccessful"/>

</message>

<message name="NotifyErrorSoapIn">

<part name="number" type="xsd:string"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Teleph

oneNumber"

sawsdl:liftingSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService/

StringToTelephoneNumber.lifting.xslt"

sawsdl:loweringSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService

#TelephoneNumberToString.lowering"/>

 <part name="message" type="xsd:string" />

</message>

<message name="NotifyErrorSoapOut">

 <part name="NotifyErrorResult" type="xsd:boolean" />

</message>

<portType name="SMSPortType"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService">

<operation name="SendSMS">

<sawsdl:attrExtensions

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService

#SendSMS"/>

 <input message="tns:SendSMSSoapIn" name="SendSMS" />

 <output message="tns:SendSMSSoapOut" name="SendSMSResponse" />

 </operation>

 <operation name="CheckNumber">

<sawsdl:attrExtensions

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService

#ValidateTelephoneNumber"/>

 <input message="tns:CheckNumberSoapIn" name="CheckNumber" />

 <output message="tns:CheckNumberSoapOut" name="CheckNumberResponse" />

 </operation>

 <operation name="NotifyError">

 <sawsdl:attrExtensions

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService

#NotifyError"/>

<input message="tns:NotifyErrorSoapIn" name="NotifyError" />

 <output message="tns:NotifyErrorSoapOut" name="NotifyErrorResponse" />

 </operation>

 </portType>

 <binding name="SMSSoapBinding" type="tns:SMSPortType">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />

 <operation name="SendSMS" >

 <soap:operation soapAction="" />

 <input>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </input>

 <output>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </output>

 </operation>

 <operation name="CheckNumber">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </input>

 <output>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </output>

 </operation>

 <operation name="NotifyError">

 <soap:operation soapAction="" />

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 31 of 78 2008-08-25

 <input>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </input>

 <output>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </output>

 </operation>

 </binding>

 <service name="SMSSoapService">

 <documentation></documentation>

 <port name="SMSSoapPort" binding="tns:SMSSoapBinding">

 <soap:address

 location="http://hydra.cnet.se/SMSService/SmsService.asmx"/>

 </port>

 </service>

</definitions>

Figure 7: Service description using SAWSDL

The example above is an annotated WSDL for the SMS service. The modelReference attribute is

used to identify the port type “SMSPortType” as the “SMSService” from the service ontology. The
operations “SendSMS”, “CheckNumber” and “NotifyError” are described by the concepts “SendSMS”,

“ValidateTelephoneNumber” and “NotifyError” in the semantic model defined externally. The

message part “number” is identified as a “TelephoneNumber” from the ontology, and a lowering and
lifting schema mapping is defined to associate the string in the WSDL with transformations to and

from the corresponding “TelephoneNumber” concept in the semantic model.

4.3.3 Hydra approach: SAWSDL combined with service ontology

For all above mentioned approaches, the developer of semantic markup of Hydra services must have

the knowledge about existing Hydra ontologies. When creating the services semantic markup, in
case of OWL-S and WSMO approach, the service description should be done manually. In the case of

SAWSDL approach, the service models can be developed manually, but there is also the real
possibility to support the generation of service descriptions semi-automatically, or fully automatically

using the SAWSDL annotations. Moreover, device manufacturers may extend the device services
WSDL with semantic annotations enabling for example semi or fully automatic processing of

SAWSDL file in order to update the Hydra device or service ontology.

As the standard for modelling of Hydra services, it is possible to use both OWL-S and WSMO
technology, which enable to solve all of the tasks that have to be solved by the first iteration of

Hydra services. Both approaches provide an acceptable solution. OWL-S, as the well known standard
seems to be more mature in various aspects. WSMO provides a more complete conceptual model,

but its specification and implementation is still incomplete and in development. In addition, as the

solution to character of initially defined tasks of service discovery, explicit composition and
invocation, both standards seem to be overly complex for the needs of Hydra. When searching for

simple and practical solution, OWL-S or WSMO approach should be used mainly in the case, when
there is the need for modelling of such a complex issues as:

 reasoning with the service preconditions and effects or

 service orchestration with ability of searching the services in the work-flow on the fly

A simple and practical solution for the first prototype of Hydra services seems to be using SAWSDL

to provide annotations referring to the custom service model. The custom Hydra service model can
be developed as a simplified, but further extensible ontology inspired by the OWL-S or WSMO

standards. The development of service ontology must take into account the future extension of
Hydra requirements on the services. It should be also possible to completely substitute the custom

Hydra service ontology with selected SWS standard, such as OWL-S or WSMO.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 32 of 78 2008-08-25

Figure 8: The Hydra approach in the first iteration is based on SAWSDL with references to the ontology

The Hydra service ontology needs to be specified from functional and structural view independently
of underlying SWS modelling formalism. Service ontology has to represent the model of various

device services. Models of these services have to be used as the basic information required to solve
the tasks of service discovery, composition (it is assumed, that the composition in first service

prototype will be static) and service invocation.

Figure 9: Service Ontology in Hydra

As the character of services provided by various devices can differ, the model has to take into
account the various aspects. As mentioned in the SMS service example, the device services models

should focus on two general cases:

 the services are permanently bound to device (e.g. every smart phone provides the SMS

service)

 the services may, but do not have to be provided by the device (e.g. smart PDA may provide
the SMS service, but does not have to or services, which are permanently bound to device,

but are not implemented)

This setup implies more problems, which solutions should be supported by the service ontology.

According to device ontology, devices are modeled as the hierarchy of various device types, in

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 33 of 78 2008-08-25

addition, there are attached various properties and capabilities to each device (or each device type).
The basic issues, which have to be addressed, can be outlined as follows:

 Various device models of the same type (e.g. smart PDA) may provide various services (e.g.

some PDAs provide SMS service, some do not).

 Various devices (device types) may provide the services, which can be the same from the

view of functionality and the input, output types (e.g. SMS service, which requires the phone
number and message text as the inputs, sends the message and returns delivery report as

the output is provided by the smart phone, but also by smart PDA device).

 Various devices (device types) or even the device itself may provide the services, which can

be the same from the functionality view, but input and output types are different (e.g. the

device provides two SMS services with various input variables).

There are many possible solutions to the described setup. The solutions should be based on the

assumptions, what have to be modeled. The suggestion is that the service ontology should model
the following issues:

 Service category representing the classification of services by their functionality or

capabilities. The service ontology may also contain the taxonomy of possible service
operations.

 Service inputs and outputs (and, possibly the preconditions and effects) represented by
ontology concepts as the single (text, number, etc.) or complex (person name, address,

etc.) type. These I/O properties have to be linked to the service grounding model (with
respect to mediation requirements). Service grounding model should also contain the

reference to the related real device WSDL (or, possibly SAWSDL) file enabling the service

invocation.

 Service capabilities representing for example the functional device properties (e.g. device is

able to send SMS), required capabilities (e.g. specific security requirements), etc.

The first modelling approach is to have service taxonomy, similar to device taxonomy, which will

represent all possible services. The model of each service should contain references to service

capabilities and I/O properties. Each specific device concept will refer to the set of related service
concepts in taxonomy. Each service model should contain the specific information on the service

grounding, which should describe the data mediation information and the link to the service WSDL
file. In the case of new device, which provides the new, not yet modeled service, the service

ontology has to be extended with the new concept representing the new service in taxonomy.

If the device joins the Hydra network, there is the expectation, that the device has implemented all
of the modeled services and provides the WSDL files, which match the modeled services, operations

and their input/output properties. In this basic case, a new ontology instance of device is created,
for each service linked in the ontology, the new instance is created and filled with link to particular

WSDL file.

If a device provides a set of permanently bound services, but not all services are implemented or if

the device may provide any service (e.g. PDA or PC), additional information to create the resulting

model of device services has to be provided. In this case, SAWSDL annotations are helpful.
According to parsed SAWSDL information, the actual run-time device model can be created

automatically. The required assumption is that SAWSDL file will contain all references to existing
concepts in service ontology.

4.4 Semantic Discovery of Networked Devices and Services

One of the contributions from Hydra is to merge UPnP (Universal Plug and Play) discovery of
networked devices with semantic services, allowing UPnP-enabled devices to act as semantic web

services towards the network.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 34 of 78 2008-08-25

4.4.1 Requirements

ID Description Rationale

104 Automatic Discovery of Services It should be possible to configure the middleware to discover

available services that meets defined criteria.

129 Support for Semantic Web
Standards for Device

Communication

Middleware should support different semantic web standards,
including OWL-S, WSMO, and selected parts of WS-*

158 There should be a hook-up-

service

When the developer creates a new application/device he wants

to have a broker that can supply him with all available services
that match certain criteria.

159 Service brokers must be

organized in a hierarchical way

With hierarchical brokers the system becomes more robust and

scalable. Users do not want that everything acts up in case of a
fire and a broker goes down. Additionally hierarchical brokers

allow for having certain rules/services only within a sub-domain.

160 Search masks for device/service
discovery

When the developer needs a service he wants to be able to
define search criteria for discovery of services

164 Support for Service standards Middleware should support widely used standards for service

description, discovery, orchestration and execution.

196 Basic Service Registry Services should register at a basic service/module of the
middleware in order to provide a base for service orchestration

198 A service broker is responsible to

provide services according to
specific keywords

Service discovery should be enhanced by a service broker

module/service as basic service of the middleware that enables
the search for services according to specific keywords

207 Service selection by context In order to select an appropriate service for a specific task,

contextual information, like the spatial position, must be taken
into account. Hydra must provide a method to specify a desired

service by contextual parameters. For example, if a certain room

in a building is specified in a search request for a service, only
services are returned that are relevant in the current user‟s

location and context.

209 Middleware has a service for
providing information about the

technical

environment/infrastructure

In order for the services to query the available infrastructure the
middleware should provide such a service

419 Backbone - Device services and

resources announcement

through the Gateway

Each device either Hydra-enabled or non-Hydra-enabled

(through proxies) must announce its services and resources in

the Backbone through its Gateway

Table 3: Requirements on Device and Service Discovery

4.4.2 Discovery issues

An important aspect of all ambient intelligence applications is for users, applications and devices to

quickly and easily discover devices that are available in there vicinity. The first issue is to discover
the existence of a device that one can communicate with, the second issue is to discover what type

services the device offers and thirdly to discover how to access and execute these services.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 35 of 78 2008-08-25

4.4.3 Hydra Approach: Combining UPnP with semantics for discovery

The overall discovery approach in Hydra is based on the combination of UPnP for networked devices

with semantic services, allowing UPnP-enabled devices to act as semantic web services towards the

network. To this end, we will use a layered approach to discovery, handling discovery at three layers
– physical, network and semantic.

4.4.3.1 A layered discovery architecture

At the lowest level the Hydra project is developing techniques for the discovery at the physical level.
This will allow us to discover devices using communication protocols like Bluetooth, ZigBee, WiFi etc.

This part of the work is carried out as part of workpackage 5 “Wireless Networks and Devices” in
task 5.3 “Wireless Devices”.

Once a device has been discovered at the physical level we need to discover it at a network level.

This is done by creating a UPnP (Universal Plug and Play) wrapper to represent the device on the
network. The UPnP wrapper then allows the device to be discovered at a network layer. The UPnP

discovery process is further described in the next section.

The UPnP wrapper is part of the “Hydra Proxy” in Figure 10 below.

Backbone

(IP network)

Hydra Middleware

NM SM CM UPnP
Web Server

WS

Hydra Middleware

NM SM CM ...
WS

Hydra Enabled Device

BT WiFi

WS

D1 D2 D3

WS (over IP)

W
S
 (o

ve
r I

P
)

Hydra Middleware

NM SM CM ...
WS

Hydra Enabled Device

WS (over IP)

WS

Hydra Middleware

NM SM CM ...
WS

WS (over WiFi)

W
S

 (
o
v
e
r

IP
)

Hydra Gateway

Hydra Proxies
Hydra Bridge

(IP to WiFi)

Hydra Virtual Devices

Hydra Enabled Device

(Non IP)

Non Hydra

Enabled Device
Non Hydra

Enabled Device

Non Hydra

Enabled Device

Figure 10: A Hydra network and its components

Once the device is discovered as part of the network, we then need to discover it from a semantic

point of view, i.e., we need to relate the device to the Hydra Device Ontology so that we know what
kind of device we have discovered, this is also further described below.

In WP 6 and this deliverable we are mainly concerned with the semantic discovery and how this is
combined with the UPnP device discovery.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 36 of 78 2008-08-25

4.4.3.2 UPnP-based Device Discovery

The UPnP (Universal Plug and Play) architecture offers pervasive peer-to-peer network connectivity
of PCs, intelligent appliances and wireless devices. The UPnP architecture is a distributed, open

networking architecture that uses TCP/IP and HTTP. It enables seamless proximity networking in

addition to data transfer between networked devices at home, in the office and everywhere in
between.

It enables data communication between any two devices under the command of any control device
in the network.

UPnP has a number of characteristics:

 Media and device independence. UPnP technology can run on any medium including phone

lines, power lines, Ethernet, IR (IrDA), RF (WiFi, Bluetooth), and FireWire. No device drivers

are used; common protocols are used instead.

 Common base protocols. Base protocol sets (Device Control Protocols, DCP) are used, on a

per-device basis.

 User interface (UI) Control. UPnP architecture enables vendor control over device user

interface and interaction using the web browser.

 Operating system and programming language independence. Any operating system and any

programming language can be used to build UPnP products. UPnP does not specify or
constrain the design of an API for applications running on control points. OS vendors may

create APIs that suit their customer's needs. UPnP enables vendor control over device UI

and interaction using the browser as well as conventional application programmatic control.

 Internet-based technologies. UPnP technology is built upon IP, TCP, UDP, HTTP, SOAP and

XML, among others.

 Programmatic control. UPnP architecture also enables conventional application programmatic

control.

 Extensibility. Each UPnP product can have value-added services layered on top of the basic

device architecture by the individual manufacturers.

The UPnP architecture supports zero-configuration, invisible networking and automatic discovery for
a breadth of device categories from a wide range of vendors. Devices can dynamically join a

network, obtain IP addresses, announce their names, convey their capabilities upon request, and

learn about the presence and capabilities of other devices. DHCP and DNS servers are optional. A
device can leave a network smoothly and automatically without leaving any unwanted state

information behind.

UPnP relies on standardised DCPs (Device Control Protocols) that define the interface to different

devices in an UPnP network. UPnP uses two different XML structures to describe a device and its

capabilities. First there is the device description which contains various metadata regarding the
device such as its type, the manufacturer, model etc. An example is shown below:

<device>

<deviceType>urn:schemas-upnp-org:device:waterPump:1</deviceType>

<friendlyName>GrundfosPump</friendlyName>

<manufacturer>Grundfos</manufacturer>

<manufacturerURL>http://www.grundfos.com</manufacturerURL>

<modelDescription>Pump</modelDescription>

<modelName>Grundfos Magna</modelName>

<modelNumber>X1</modelNumber>

<UDN>uuid:dac824ab-bca1-4d5c-93c5-578a0c697ba1</UDN>

<serviceList>

<service>

<serviceType>urn:schemas-upnp-

org:service:grundfosPumpService:1</serviceType>

<serviceId>urn:upnp-org:serviceId:grundfosPumpService</serviceId>

<SCPDURL>_grundfosPumpService_scpd.xml</SCPDURL>

<controlURL>_grundfosPumpService_control</controlURL>

<eventSubURL>_grundfosPumpService_event</eventSubURL>

</service>

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 37 of 78 2008-08-25

</serviceList>

</device>

Figure 11: UPnP Device description (pump).

Secondly, there is the SCPD (Service Control Point Description), which describes the capabilities of
the device and how to invoke its different services:

<?xml version="1.0" encoding="utf-8"?>

<scpd xmlns="urn:schemas-upnp-org:service-1-0">

 <specVersion>

 <major>1</major>

 <minor>0</minor>

 </specVersion>

 <actionList>

 <action>

 <name>GetStatus</name>

 <argumentList>

 <argument>

 <name>ResultStatus</name>

 <direction>out</direction>

 <relatedStateVariable>Status</relatedStateVariable>

 </argument>

 </argumentList>

 </action>

 <action>

 <name>SetTarget</name>

 <argumentList>

 <argument>

 <name>newTargetValue</name>

 <direction>in</direction>

 <relatedStateVariable>Target</relatedStateVariable>

 </argument>

 </argumentList>

 </action>

 </actionList>

 <serviceStateTable>

 <stateVariable sendEvents="yes">

 <name>Status</name>

 <dataType>boolean</dataType>

 </stateVariable>

 <stateVariable sendEvents="no">

 <name>Target</name>

 <dataType>boolean</dataType>

 </stateVariable>

 </serviceStateTable>

</scpd>

Figure 12: UPnP Service description

4.4.3.3 Service Discovery

The goal of service discovery task is to find a suitable service provided by specific device (or device

type) in accordance to defined requirements. The requirements of desired service are usually

specified by the following terms (represented as the inter-related ontology concepts):

 Service category: the specification of service position in the service taxonomy, which

represents the classification of services by their capabilities or usage purposes. Generally,
the category information tends to reduce the complexity of the discovery process.

 Service inputs and outputs: specification of concepts required on the inputs and the outputs
of service represented by ontology concepts as the single (text, number, etc.) or complex

types (person name, address, etc.).

 Service preconditions and effects: usually the rules expressing the constraints, which have to
be satisfied to enable the service invocation and the effects which service invocation causes.

Preconditions and effects usually refer the run-time values (and the value changes in the
case of effects) in the ontology.

 Service capabilities: similarly, as in the case of category information, specification of service

capabilities (for example, service is capable to send SMS, service is capable to play audio,
etc.) should lead to reduced complexity of the discovery process. Capability information may

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 38 of 78 2008-08-25

also define the special requirements on the service, such as capability of using required
communication protocols or satisfying specified security requirements.

In the context of Hydra, the service discovery task defined this way can be used in various cases, for

example:

 From a developer user point of view: to find the required service provided by specific device

in the process of development of basic communication patterns, such as composed (or
orchestrated) services, choreography interfaces or service user interfaces.

 From a system or application point of view: to find the required service provided by specific
device when executing the complex process requiring the service orchestration.

There are existing tools and matchmakers supporting the service discovery for both OWL-S and

WSMO standards (description of this tools is out of scope of this deliverable), which may be used for
particular approach. The issue, which should be especially addressed, is the support of using the

IOPEs for service discovery. In the real applications, IOPEs are not used properly, because the
reasoning with preconditions and effects in real-time discovery process is very time expensive.

Usually, the potential preconditions and effects are skipped or pre-computed.

As the SAWSDL approach does not explicitly support service discovery, there are two basic
possibilities, which can be used in this case:

 The Service discovery process is realized by searching the SAWSDL according to provided
semantic annotations.

 Using the annotations in SAWSDL file, the model of service is annotated in the Hydra service
ontology and the discovery process is realized by matching the ontology concepts in

accordance to specified requirements, similarly as in OWL-S/WSMO approach.

4.5 Lightweight Orchestration of Device Services

4.5.1 Requirements

ID Description Rationale

113 Composition (of services and

devices)

In order to enhance or replace application level functions it will

be useful to be able to compose services and devices from
different providers and/or manufacturers into high level

services/devices

129 Support for Semantic Web
Standards for Device

Communication

Middleware should support different semantic web standards,
including OWL-S, WSMO, and selected parts of WS-*

157 Availability of combined services A developer wants to easily access a higher level service which is
in fact a combination of multiple services

164 Support for Service standards Middleware should support widely used standards for service

description, discovery, orchestration and execution.

196 Basic Service Registry Services should register at a basic service/module of the
middleware in order to provide a base for service orchestration

198 A service broker is responsible to

provide services according to

specific keywords

Service discovery should be enhanced by a service broker

module/service as basic service of the middleware that enables

the search for services according to specific keywords

211 There are components/services

in the middleware that integrate

The integration of basic systems to subsystems should ease the

configuration of higher level services. Higher level services could

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 39 of 78 2008-08-25

subsystems then consist of a combination of basic systems

216 The middleware should have a
graceful degradation service

Services should be organised in a cascade of services in order to
allow an orchestration of services providing best possible

services down to basic services automatically, according to their
availability

290 Share service orchestration

between users

Service orchestration definition should be shared between

developer users, in order to allow a distribution of useful service
orchestration to other developers

394 Stateful service orchestration In order to specify service workflows we need to be able

to keep state between the execution of the stateless

services.

Table 4: Requirements on Orchestration

4.5.2 Orchestration in a Service-Oriented Architecture

In a service oriented architecture (SOA) some of the key aspects are loose coupling of services,
implementation neutrality, flexible configurability and coarse granularity. If a service designer has

those goals in mind while defining the scope of one service it will usually a rather low-level service
from a functionality point of view. In order to create higher-level services one has to define in which

order other services will be consumed and then find and execute them.

So within a SOA service discovery is only the starting point. To create useful applications on the SOA
architecture style one has to orchestrate services to support workflows that were previously defined

as well as creating composite services out of existing lower level services as can be seen in the SOA
example in figure 4 (examples for orchestration at the bottom and composition at the top).

The orchestration of a sequence of services can be done by several technologies. WS-BPEL is the
extension of BPEL (Business Process Execution Language) to web services but is recognized to be

rather complex and most probably not suited to the requirements of Hydra. One example of using

BPEL is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<process xmlns=http://docs.oasis-open.org/wsbpel/2.0/process/executable

xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:ns1="http://docs.active-

endpoints.com/activebpel/sample/wsdl/order/2006/09/order.wsdl" xmlns:ns1-

1="http://docs.active-

endpoints.com/activebpel/sample/wsdl/pick_start/2006/09/pick_start.wsdl"

xmlns:ns1-2="http://docs.active-

endpoints.com/activebpel/sample/wsdl/pick_start/2006/09/pick_start.wsdl"

xmlns:ns2="http://docs.active-

endpoints.com/activebpel/sample/wsdl/orderProcess/2006/09/orderProcess.wsdl"

xmlns:ns3="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns4="http://docs.active-

endpoints.com/activebpel/sample/wsdl/pick_start/2006/09/pick_start.wsdl"

xmlns:ns5="urn:oasis:names:specification:ubl:schema:xsd:Order-1.0"

xmlns:ns6="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicComponents-1.0"

xmlns:ns7="urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateComponents-

1.0" xmlns:ns8="http://schemas.active-

endpoints.com/sample/orderTypes/2006/09/orderTypes.xsd"

xmlns:ns9="urn:oasis:names:specification:ubl:schema:xsd:OrderResponseSimple-1.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="multi-start_receives"

suppressJoinFailure="yes" targetNamespace="http://docs.active-

endpoints.com/activebpel/sample/bpel/multi-start_receives/2006/09/multi-

start_receives.bpel">

<import importType="htp://schemas.xmlsoap.org/wsdl/"

lcation="project:/BPEL_Samples/Resources/WSDL/order.wsdl"

namespace="http://docs.active-

endpoints.com/activebpel/sample/wsdl/order/2006/09/order.wsdl"/>

<import importType="htp://schemas.xmlsoap.org/wsdl/"

lcation="project:/BPEL_Samples/Resources/WSDL/orderProcess.wsdl"

http://docs.oasis-open.org/wsbpel/2.0/process/executable
p://schemas.xmlsoap.org/wsdl/%22%20l
p://schemas.xmlsoap.org/wsdl/%22%20l
p://schemas.xmlsoap.org/wsdl/%22%20l
p://schemas.xmlsoap.org/wsdl/%22%20l
p://schemas.xmlsoap.org/wsdl/%22%20l
p://schemas.xmlsoap.org/wsdl/%22%20l

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 40 of 78 2008-08-25

namespace="http://docs.active-

endpoints.com/activebpel/sample/wsdl/orderProcess/2006/09/orderProcess.wsdl"/>

<import importType="htp://schemas.xmlsoap.org/wsdl/"

lcation="project:/BPEL_Samples/Resources/WSDL/pick_start.wsdl"

namespace="http://docs.active-

endpoints.com/activebpel/sample/wsdl/pick_start/2006/09/pick_start.wsdl"/>

 <partnerLinks>

<partnerLink myRole="orderProcess" name="orderProcessPLT"

partnerLinkType="ns2:orderProcessPLT"/>

<partnerLink myRole="pick-startProcess" name="ublOrderPLT"

partnerLinkType="ns1-1:ublOrderPLT"/>

 </partnerLinks>

 <variables>

 <variable messageType="ns1:orderMessage" name="orderMessage"/>

 <variable messageType="ns2:orderProcessResponse" name="orderProcessResponse"/>

 <variable messageType="ns1-1:ublOrderMessage" name="ublOrderMessage"/>

 <variable messageType="ns1-1:customOutputMessage" name="customOutputMessage"/>

 <variable messageType="ns1-1:ublOutputMessage" name="ublOutputMessage"/>

 </variables>

 <correlationSets>

 <correlationSet name="Order" properties="ns2:PONum ns2:CustID"/>

 </correlationSets>

 <flow>

 <sequence>

<receive createInstance="yes" operation="receiveOrder"

partnerLink="orderProcessPLT" portType="ns2:OrderPT" variable="orderMessage">

 <correlations>

 <correlation initiate="join" set="Order"/>

 </correlations>

 </receive>

 <assign name="CreateResponse">

 <copy>

 <from>concat('Received custom order with PO# ',

$orderMessage.order/OrderHeader/PONo, ' from customer ',

$orderMessage.order/OrderHeader/CustId)</from>

 <to part="response" variable="orderProcessResponse"/>

 </copy>

 <copy>

 <from part="order" variable="orderMessage">

 <query>OrderHeader/PONo</query>

 </from>

 <to part="PONum" variable="orderProcessResponse"/>

 </copy>

 <copy>

 <from part="order" variable="orderMessage">

 <query>OrderHeader/CustId</query>

 </from>

 <to part="CustID" variable="orderProcessResponse"/>

 </copy>

 </assign>

<reply operation="receiveOrder" partnerLink="orderProcessPLT"

portType="ns2:OrderPT" variable="orderProcessResponse">

 <correlations>

 <correlation initiate="no" set="Order"/>

 </correlations>

 </reply>

 </sequence>

 <sequence>

<receive createInstance="yes" operation="receiveUBLOrder"

partnerLink="ublOrderPLT" portType="ns1-1:ublPT" variable="ublOrderMessage">

 <correlations>

 <correlation initiate="join" set="Order"/>

 </correlations>

 </receive>

 <assign name="InitializeVariable">

 <copy>

 <from>

 <literal>

 <OrderResponseSimple

xmlns="urn:oasis:names:specification:ubl:schema:xsd:OrderResponseSimple-1.0"

xmlns:cac="urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateCompon

ents-1.0"

xmlns:cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicComponents

-1.0"

xmlns:ccp="urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParamete

rs-1.0"

p://schemas.xmlsoap.org/wsdl/%22%20l
p://schemas.xmlsoap.org/wsdl/%22%20l
p://schemas.xmlsoap.org/wsdl/%22%20l

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 41 of 78 2008-08-25

xmlns:dsc="urn:oasis:names:specification:ubl:schema:xsd:DocumentStatusCode-

1.0"

xmlns:sdt="urn:oasis:names:specification:ubl:schema:xsd:SpecializedDatatypes-

1.0"

xmlns:udt="urn:oasis:names:specification:ubl:schema:xsd:UnspecializedDatatype

s-1.0">

 <ID>id</ID>

 <cbc:IssueDate/>

 <AcceptedIndicator>true</AcceptedIndicator>

 <cac:OrderReference/>

 <cac:BuyerParty/>

 <cac:SellerParty/>

</OrderResponseSimple>

 </literal>

 </from>

 <to part="output" variable="ublOutputMessage"/>

 </copy>

 </assign>

 <assign name="CreateResponse">

 <copy>

 <from>concat('Received UBL order with PO# ',

$ublOrderMessage.order/ns5:BuyersID, ' from customer ',

$ublOrderMessage.order/ns7:BuyerParty/ns7:Party/ns7:PartyName/ns6:Name

)</from>

 <to part="PONum" variable="orderProcessResponse"/>

 </copy>

 <copy>

 <from>'OK'</from>

 <to part="output" variable="customOutputMessage"/>

 </copy>

 <copy>

 <from part="order" variable="ublOrderMessage">

 <query>ns6:IssueDate</query>

 </from>

 <to part="output" variable="ublOutputMessage">

 <query>ns6:IssueDate</query>

 </to>

 </copy>

 </assign>

<reply operation="receiveUBLOrder" partnerLink="ublOrderPLT" portType="ns1-

1:ublPT" variable="ublOutputMessage"/>

 </sequence>

 </flow>

</process>

Figure 13: Orchestration using BPEL

OWL-S does not distinguish the choreography and composite processes (or orchestration). In OWL-
S, each choreography interface is realized as the composite process using only the operations of the

one single service by defining the required sequence of service operations. Each of these composite

processes can be treated as the choreography interface and can be used as the building block when
composing more complex orchestrating processes.

On the other side, WSMO has the strong support for clearly distinguished choreography interfaces
and orchestration work-flows. Generally, the process of complex process composition is the similar

as in the case of OWL-S. The difference is that the composite processes are built as the combination
of choreography blocks and the orchestration processes.

4.5.3 Static or dynamic orchestration

Another distinction is between static and dynamic service composition. In static service composition
the services that are composed to form a higher level service are known in advance during

development time and the sequence of executions can be pre-determined. On the other hand in
dynamic composition one defines during development time the goal and the functionality that needs

to be carried out and the discovery of matching services and the sequence of the service

consumptions is determined dynamically during runtime.

In this Hydra iteration we have chosen to support only the static composition approach because the

dynamic approach only increases the complexity and is of no real value in the Hydra context.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 42 of 78 2008-08-25

Dynamic composition can be added later on without any problems into the middleware. But this
does not mean that services cannot be replaced by other services with the same functionality during

runtime. Therefore it will be possible that the developer specifies e.g. that he needs a service for

transmitting data with a certain bandwidth and TCP/IP support and an agent will then query the
available repositories and provide a list of available services!

Figure 14: Orchestration example [8]

Another area that needs to be tackled is the transaction safety of executing a sequence of loosely

coupled services. How does the middleware behave if a service is not available or delivers wrong
data? How does one model how the application will react and will it be possible to rollback previously

executed service invocations? For this there exists standards like WS-Transaction but it has to be

seen if this is feasible within the Hydra context.

4.5.4 Hydra approach: Lightweight orchestration

As was said above in the first prototype of Hydra complex services are created by static service
composition. Based on our experiments with existing orchestration approaches, as have been

discussed above, we have concluded that they appear to be too complex and resource intensive to

be used in Hydra. Therefore we will research if a more lightweight approach can be used. Such a
custom orchestration language (Device Orchestration Language Light, DOLL), will be specified in the

Hydra project, but it is not foreseen to be completed during this development iteration.

In the case of using the SAWSDL in Hydra, it would be suitable to create the models of services

annotated from SAWSDL and use those processes as the building blocks for the composite work-
flows. In all cases, if there is no need to take into account the complex processes requiring the on-

line service discovery and planning, the composite processes can be specified in the development

process and simply executed.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 43 of 78 2008-08-25

4.6 Ontology-driven Invocation of Services

4.6.1 Requirements

ID Description Rationale

111 Dynamic Web Service Binding Middleware should be able to after device discovery and

categorisation expose a new device as a web service that can be
called without re-compilation.

129 Support for Semantic Web

Standards for Device
Communication

Middleware should support different semantic web standards,

including OWL-S, WSMO, and selected parts of WS-*

164 Support for Service standards Middleware should support widely used standards for service

description, discovery, orchestration and execution.

180 Service mediating network
connections according to

different qualities

There should be a service which lists different network
connections depending on specified properties (connection

speed, encryption). Devices can then negotiate such connections

with remote devices, without the need to take care about the
networking details

197 Services define their

communication needs in terms of
needed QoS parameters

The services define their communication needs in terms of

needed QoS parameters (needed bandwidth, needed quality...)
without specifying the technical details. The middleware is free

to choose the appropriate networking matching the specified

needs

Table 5: Requirements on Invocation and Execution

4.6.2 Service Grounding

Semantic Web Services frameworks like OWL-S and WSMO combine semantic descriptions of Web

service capabilities, inputs, outputs and behavior with the syntactic interface descriptions in WSDL
and XML Schema. Services are invoked using the grounding model, which specifies how to

communicate with the particular service. For the interoperability reasons with existing Web Services

and infrastructures, both OWL-S and WSMO support the service grounding into WSDL. According to
the grounding model the service is invoked using specified operations with related inputs, outputs

and endpoints.

In the past years some approaches to service grounding have been developed. While each of them

has quite different characteristics they share the extension of WSDL with semantic information.

Below we discuss how service grounding is done in OWL-S, WSMO and SAWSDL.

4.6.2.1 OWL-S

Below is an example of a service grounding using OWL-S.

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xml:base="http://hydra.cnet.se/SMSService/SMSService_Grounding.owl#"

xmlns:grounding="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owls11/G

rounding.owl#"

xmlns:owl="http://jamsci.servehttp.com/owlsedit/owl.rdf#"

xmlns:process="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owls11/Pro

cess.owl#"

xmlns:profile="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owls11/Pro

file.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://jamsci.servehttp.com/owlsedit/rdf-schema.rdf#"

xmlns:service="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owls11/Ser

vice.owl#" xmlns:xsd="http://jamsci.servehttp.com/owlsedit/XMLSchema.xsd#">

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 44 of 78 2008-08-25

<owl:Ontology rdf:about="">

<owl:versionInfo>Version 1.0</owl:versionInfo>

<rdfs:comment>Add Ontology Comment</rdfs:comment>

<owl:imports rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns"/>

<owl:imports rdf:resource="http://jamsci.servehttp.com/owlsedit/owl.rdf"/>

<owl:imports rdf:resource="http://jamsci.servehttp.com/owlsedit/rdf-schema.rdf"/>

<owl:imports

rdf:resource="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owls

11/Service.owl"/>

<owl:imports

rdf:resource="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owls

11/Profile.owl"/>

<owl:imports

rdf:resource="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owls

11/Process.owl"/>

<owl:imports

rdf:resource="http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/owls

11/Grounding.owl"/>

</owl:Ontology>

<grounding:WsdlGrounding rdf:ID="SMSService_Grounding">

<service:supportedBy

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_Service#SMSService_Service"/

>

<grounding:hasAtomicProcessGrounding

rdf:resource="#WSDLGrounding_SMSService_SendSMS"/>

<grounding:hasAtomicProcessGrounding

rdf:resource="#WSDLGrounding_SMSService_CheckNumber"/>

<grounding:hasAtomicProcessGrounding

rdf:resource="#WSDLGrounding_SMSService_NotifyError"/>

</grounding:WsdlGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="WSDLGrounding_SMSService_SendSMS">

<grounding:owlsProcess

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#SMSPortType_Sen

dSMS"/>

<grounding:wsdlOperation>

<xsd:uriReference rdf:value="http://Hydra.cnet.se/SMSService.wsdl#SendSMS"/>

</grounding:wsdlOperation>

<grounding:wsdlInputMessage>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#SendSMSSoapIn"/>

</grounding:wsdlInputMessage>

<grounding:wsdlInputMessageParts rdf:parseType="Collection">

<grounding:WsdlMessageMap>

<grounding:owlsParameter

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#

SMSPortType_SendSMS_number_IN"/>

<grounding:wsdlMessagePart>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#number"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

<grounding:WsdlMessageMap>

<grounding:owlsParameter

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#

SMSPortType_SendSMS_message_IN"/>

<grounding:wsdlMessagePart>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#message"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

</grounding:wsdlInputMessageParts>

<grounding:wsdlOutputMessage>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#SendSMSSoapOut"/>

</grounding:wsdlOutputMessage>

<grounding:wsdlOutputMessageParts rdf:parseType="Collection">

<grounding:WsdlMessageMap>

<grounding:owlsParameter

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#

SMSPortType_SendSMS_SendSMSResult_OUT"/>

<grounding:wsdlMessagePart>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#SendSMSResult"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

</grounding:wsdlOutputMessageParts>

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 45 of 78 2008-08-25

<grounding:wsdlReference>

<xsd:uriReference rdf:value="http://www.w3.org/TR/2001/NOTE-wsdl-20010315"/>

</grounding:wsdlReference>

</grounding:WsdlAtomicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="WSDLGrounding_SMSService_CheckNumber">

<grounding:owlsProcess

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#SMSPortType_Che

ckNumber"/>

<grounding:wsdlOperation>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#CheckNumber"/>

</grounding:wsdlOperation>

<grounding:wsdlInputMessage>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#CheckNumberSoapIn"/>

</grounding:wsdlInputMessage>

<grounding:wsdlInputMessageParts rdf:parseType="Collection">

<grounding:WsdlMessageMap>

<grounding:owlsParameter

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#

SMSPortType_CheckNumber_number_IN"/>

<grounding:wsdlMessagePart>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#number"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

</grounding:wsdlInputMessageParts>

<grounding:wsdlOutputMessage>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#CheckNumberSoapOut"/>

</grounding:wsdlOutputMessage>

<grounding:wsdlOutputMessageParts rdf:parseType="Collection">

<grounding:WsdlMessageMap>

<grounding:owlsParameter

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#

SMSPortType_CheckNumber_CheckNumberResult_OUT"/>

<grounding:wsdlMessagePart>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#CheckNumberResult"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

</grounding:wsdlOutputMessageParts>

<grounding:wsdlReference>

<xsd:uriReference rdf:value="http://www.w3.org/TR/2001/NOTE-wsdl-20010315"/>

</grounding:wsdlReference>

</grounding:WsdlAtomicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="WSDLGrounding_SMSService_NotifyError">

<grounding:owlsProcess

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#SMSPortType_Not

ifyError"/>

<grounding:wsdlOperation>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#NotifyError"/>

</grounding:wsdlOperation>

<grounding:wsdlInputMessage>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#NotifyErrorSoapIn"/>

</grounding:wsdlInputMessage>

<grounding:wsdlInputMessageParts rdf:parseType="Collection">

<grounding:WsdlMessageMap>

<grounding:owlsParameter

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#

SMSPortType_NotifyError_number_IN"/>

<grounding:wsdlMessagePart>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#number"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

<grounding:WsdlMessageMap>

<grounding:owlsParameter

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#

SMSPortType_NotifyError_message_IN"/>

<grounding:wsdlMessagePart>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#message"/>

</grounding:wsdlMessagePart>

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 46 of 78 2008-08-25

</grounding:WsdlMessageMap>

</grounding:wsdlInputMessageParts>

<grounding:wsdlOutputMessage>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#NotifyErrorSoapOut"/>

</grounding:wsdlOutputMessage>

<grounding:wsdlOutputMessageParts rdf:parseType="Collection">

<grounding:WsdlMessageMap>

<grounding:owlsParameter

rdf:resource="http://hydra.cnet.se/SMSService/SMSService_ProcessModel#

SMSPortType_NotifyError_NotifyErrorResult_OUT"/>

<grounding:wsdlMessagePart>

<xsd:uriReference

rdf:value="http://Hydra.cnet.se/SMSService.wsdl#NotifyErrorRes

ult"/>

</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>

</grounding:wsdlOutputMessageParts>

<grounding:wsdlReference>

<xsd:uriReference rdf:value="http://www.w3.org/TR/2001/NOTE-wsdl-20010315"/>

</grounding:wsdlReference>

</grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>

Figure 15: Service grounding using OWL-S

4.6.2.2 SAWSDL

WSDL provides several hooks into extending the description with semantic elements. One approach
can be to include the semantic elements directly in the WSDL file and the other approach inserts

only a link to an external file which contains the semantic description.

The newest member of this group is SAWSDL which is primarily based on WSDL-S. SAWSDL is

agnostic to the underlying semantic web framework therefore it could be used with OWL-S, WSMO

or even a non-ontology language like UML.

<?xml version="1.0" ?>

<definitions name="SMSService"

targetNamespace="http://Hydra.cnet.se/SMSService.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://Hydra.cnet.se/SMSService.wsdl"

xmlns:sawsdl="http://www.w3.org/ns/sawsdl">

 <message name="SendSMSSoapIn">

<part name="number" type="xsd:string"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Teleph

oneNumber"

sawsdl:liftingSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService/

StringToTelephoneNumber.lifting.xslt"

sawsdl:loweringSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService

#TelephoneNumberToString.lowering"/>

 <part name="message" type="xsd:string" />

 </message>

 <message name="SendSMSSoapOut">

<part name="SendSMSResult" type="xsd:boolean"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Operat

ionSuccessful"/>

 </message>

 <message name="CheckNumberSoapIn">

<part name="number" type="xsd:string"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Teleph

oneNumber"

sawsdl:liftingSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService/

StringToTelephoneNumber.lifting.xslt"

sawsdl:loweringSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService

#TelephoneNumberToString.lowering"/>

 </message>

 <message name="CheckNumberSoapOut">

<part name="CheckNumberResult" type="xsd:boolean"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Operat

ionSuccessful"/>

 </message>

 <message name="NotifyErrorSoapIn">

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 47 of 78 2008-08-25

<part name="number" type="xsd:string"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Teleph

oneNumber"

sawsdl:liftingSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService/

StringToTelephoneNumber.lifting.xslt"

sawsdl:loweringSchemaMapping="http://hydra.cnet.se/serviceOntology/SMSService

#TelephoneNumberToString.lowering"/>

 <part name="message" type="xsd:string" />

 </message>

 <message name="NotifyErrorSoapOut">

 <part name="NotifyErrorResult" type="xsd:boolean" />

 </message>

<portType name="SMSPortType"

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService">

 <operation name="SendSMS">

 <sawsdl:attrExtensions

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#SendSM

S"/>

 <input message="tns:SendSMSSoapIn" name="SendSMS" />

 <output message="tns:SendSMSSoapOut" name="SendSMSResponse" />

 </operation>

 <operation name="CheckNumber">

<sawsdl:attrExtensions

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService

#ValidateTelephoneNumber"/>

 <input message="tns:CheckNumberSoapIn" name="CheckNumber" />

 <output message="tns:CheckNumberSoapOut" name="CheckNumberResponse" />

 </operation>

 <operation name="NotifyError">

 <sawsdl:attrExtensions

sawsdl:modelReference="http://hydra.cnet.se/serviceOntology/SMSService#Notify

Error"/>

 <input message="tns:NotifyErrorSoapIn" name="NotifyError" />

 <output message="tns:NotifyErrorSoapOut" name="NotifyErrorResponse" />

 </operation>

 </portType>

 <binding name="SMSSoapBinding" type="tns:SMSPortType">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />

 <operation name="SendSMS" >

 <soap:operation soapAction="" />

 <input>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </input>

 <output>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </output>

 </operation>

 <operation name="CheckNumber">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </input>

 <output>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </output>

 </operation>

 <operation name="NotifyError">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </input>

 <output>

 <soap:body use="encoded" namespace="urn:SMS-SoapServices"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

 </output>

 </operation>

 </binding>

 <service name="SMSSoapService">

 <documentation></documentation>

 <port name="SMSSoapPort" binding="tns:SMSSoapBinding">

 <soap:address

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 48 of 78 2008-08-25

 location="http://hydra.cnet.se/SMSService/SmsService.asmx"/>

 </port>

 </service>

</definitions>

Figure 16: Service Grounding using SAWSDL

SAWSDL is seen as very flexible because it is domain independent and independent on the mapping

language and this flexibility is needed in a business context where one cannot expect to have

uniform representations of data and interfaces between e.g. two companies. This flexibility raises
also some criticism that additional conventions and guidelines need to be set up to ensure a proper

execution of the supported operations. SAWSDL also is no fully fledged SWS framework in that it
provides no sophisticated support for discovery and composition but only supports basic service

discovery [25].

4.6.3 Data grounding

An important issue related to service grounding and invocation is the data grounding, which specifies

how complex WSDL types should be transformed to ontology concepts and vice versa. This task
often requires data mediation in cases when the WSDL complex type does not match the related

ontology concept perfectly.

OWL-S usually uses the XSLT transformations as the solution to data mediation. Conceptual model
of WSMO contains description of mediators, which are used also for purposes of data mediation

between WSDL types and ontology concepts.

When using the SAWSDL approach, the Hydra service ontology would have to model the grounding

information, which can be inspired by the OWL-S or WSMO approach. Data mediation can be
realized by extending the ontology model of inputs and outputs according to liftingSchemaMapping

and loweringSchemaMapping SAWSDL attributes.

4.6.4 Hydra approach

The Hydra approach to service grounding and invocation is based on the combination of WSDL

semantic annotation with grounding references in the ontology. The device ontology holds
descriptions of devices and services. The discovery, mapping and reasoning done to find suitable

services to accomplish a certain task is performed using the ontology. The WSDL grounding for the

semantic service is referenced in the ontology, so that the web service on any device that can be
found in the ontology also can be called without using information from the device (although the

device could provide its own WSDL).

4.6.4.1 SAWSDL grounding

SAWSDL provides a big advantage for the later use of Hydra especially in the business context and

therefore we have chosen to use SAWSDL as the basis for the SWS grounding. This decision was
strongly influenced by requirements #129 (Support for different SWS frameworks) and #164

(Support of widely used standards).

Regarding the annotation of WSDL files with semantic information SAWSDL only supports inline
annotations. Therefore linking to an external file for the semantic description is not possible. But

since WSDL files are usually automatically created using specific tools this is not a disadvantage but
more an advantage. This approach allows us to define additional guidelines and conventions in

models that can be checked during the automatic generation of the WSDL files. Those referenced

models can also be used during development to provide the developer with hints on how to adhere
to these conventions and therefore lower the defect rate and increase compatibility with other Hydra

based services.

Another problem with SAWSDL is the need to map between the ontologies used and the XML data

that is used for the SAWSDL description. This problem is also augmented by our automatic MDA

approach to generating the WSDL files.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 49 of 78 2008-08-25

Figure 17: The Hydra approach to service grounding is based on SAWSDL with grounding references in the
ontology

However, it may also be the case that a device manufacturer provides an “embedded” WDSL with

semantic annotations using concepts from the Hydra Device Ontology, e.g. “D1 is an instance of a
subclass of Device class X”. When Hydra discovers this new Hydra compliant device, it can

automatically incorporate this information in the Device Ontology and infer the capabilities of the
device. Semantic annotations of web services in Hydra may thus be performed in both a centralized

and a decentralized manner. For the latter decentralized approach we will use SAWSDL to

semantically annotate the service descriptions.

4.6.4.2 UPnP grounding

We also allow service grounding directly using UPnP by extending the SCPD format to allow direct

annotation on the device. This allows a device manufacturer to either provide a link to the Hydra
Device Ontology for each action a device can perform or provide a device type identifier that can be

looked up in the Hydra Device Ontology.

<?xml version="1.0" encoding="utf-8"?>

<scpd xmlns="urn:schemas-upnp-org:service-1-0">

 <specVersion>

 <major>1</major>

 <minor>0</minor>

 </specVersion>

 <actionList>

 <action hydraannotation="http://www.hydra.cnet.se">

 <name>GetStatus</name>

 <argumentList>

 <argument>

 <name>ResultStatus</name>

 <direction>out</direction>

 <relatedStateVariable>Status</relatedStateVariable>

 </argument>

 </argumentList>

 </action>

 <action hydraannotation=" http://www.hydra.cnet.se">

 <name>SetTarget</name>

 <argumentList>

 <argument>

 <name>newTargetValue</name>

 <direction>in</direction>

 <relatedStateVariable>Target</relatedStateVariable>

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 50 of 78 2008-08-25

 </argument>

 </argumentList>

 </action>

 </actionList>

 <serviceStateTable>

 <stateVariable sendEvents="yes">

 <name>Status</name>

 <dataType>boolean</dataType>

 </stateVariable>

 <stateVariable sendEvents="no">

 <name>Target</name>

 <dataType>boolean</dataType>

 </stateVariable>

 </serviceStateTable>

</scpd>

Figure 18: UPnP Service Grounding by annotating SCPD

4.7 Secure Semantic Web Services for Devices

4.7.1 Requirements

ID Description Rationale

129 Support for Semantic Web
Standards for Device

Communication

Middleware should support different semantic web standards,
including OWL-S, WSMO, and selected parts of WS-*

164 Support for Service standards Middleware should support widely used standards for service
description, discovery, orchestration and execution.

239 Automatic service diagnostic for

security relevant services

Security relevant services should provide a self-diagnostic

services that provides an overview of all security-relevant
features

358 Developer must be able to

semantically define security
requirements

If developers are to make devices that can co-operate through

other protocols and security mechanisms, they have to be able
to describe the inherent security requirements in a semantic

interoperable language. It is not enough just to use a specific

protocol's security as this does NOT tell WHY he uses it and
WHAT he really needs for the application to proceed.

Table 6: Requirements on Security of Web Services for Devices

Security is an important issue when it comes to web services - whether semantic or not. Although
web services are re-usable and accessible components by design, not every service is thought to be

used by everybody. Access to a service may rather depend on the identity of the requester, of
certain attributes or even of the current context. As web services themselves do not support any

kind of access control, such mechanisms have to be provided in addition to Hydra‟s services. Even

other security requirements like confidentiality, non-repudiation, integrity or authenticity are not an
integral part of web services and have to be specified by additional mechanisms. Although there are

a number of different mechanisms which could be used to secure communication between Hydra‟s
managers, web service specific standards like WS-Policy and WS-Security will probably be used for

core Hydra security. A discussion of possible solutions is found in deliverable D5.6 and will be

amended by the contributions in D7.3.

Semantic web services provide some benefits supporting security. It is for instance possible to use

semantic descriptions attached to web services in order to describe their security requirements and
capabilities. Security requirements describe conditions set by the service which have to be met by

the requester. For example a service could make the condition that every call has to be signed by a
trusted third party. Security capabilities on the other hand describe functionality supported by a

service, e.g. the ability to apply PGP encryption to data. However adding semantic descriptions to

web services also introduces some new threats which do not exist in traditional web services. A new

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 51 of 78 2008-08-25

attack vector is for instance the manipulation of security-relevant semantic annotations of a service:
An attacker could make a service pretend to support strong security mechanisms which are in fact

not available and thereby trick a requestor into assuming a higher protection level. The result could

be that requesters choose the attacked service for critical operations as it appears to provide the
best security mechanisms. However the service might in fact provide no security mechanisms at all

and thereby leave all critical data prone to manipulations by the attacker.

In this section, we will outline some benefits for Hydra we expect from using semantic web services

for security reasons. Further, we will give an overview of existing approaches in the area and discuss
if and how they could be adopted to the Hydra architecture. Finally we will outline some challenges

raising from the combination of security and semantic web services.

4.7.2 Benefits

In this subsection, we sketch how semantic web services could contribute to Hydra's security

concept.

4.7.2.1 Using semantic annotations to express security requirements

Semantic web services differ from syntactic web services in semantic annotations that are attached

to the service‟ description and allow for automatic discovery, composition and execution of services

depending on their properties. These descriptions could also be used to express a service‟s security
requirements. These could either be contained in the semantic description itself, e.g. in OWL-S or

WSMO or could be described by external policies which are referenced from the semantic description
of a service. The latter allows already existing security policies to be referenced from a service and

thereby broadens the range of possible policy languages to be used. While the description of
security requirements of traditional web services is limited to WS-specific languages like WS-Policy

(and its extension WS-SecurityPolicy), semantic annotations can refer to any kind of external policy

definition and thereby allow using potentially more appropriate policy languages. In case the security
requirements are directly specified in the semantic service description, they could be referenced

from external policies and be used in a rule‟s condition. An example would be using XACML policies
to restrict the access to services, depending on properties of the service which are declared in its

semantic annotation.

However, both possibilities require adapting policy enforcement mechanisms in order to take
semantic descriptions into account. Just attaching security specifications to a service does not

guarantee that callers obey them. Instead a policy enforcement point4 (PEP) must ensure that all
calls to a service are first checked against the security requirements specified by the service‟s

semantic annotations. It is clear that these annotations must be understood by all PEPs. The same

applies to the policy language used. Semantic descriptions cannot ensure interoperability if they
refer to policy specifications which are not understood by all parties. Thus, a common policy

representation has to be used and semantic descriptions of security properties have to refer to
instances of a common security ontology.

4.7.2.2 Discovery according to security requirements

Enriching Hydra services by semantic descriptions of security capabilities and requirements can not
only be used for enforcement during invocation of the services.

A further possibility is to use semantic security specifications even for discovering and selecting

appropriate services at run time. As the security requirements of a requester are known in advance,
it is possible to select only such services which match these requirements. Thus a requester can

avoid orchestrating services which can not be used at a later point due to mismatching security

4 A PEP is responsible for enforcing a security policy, i.e. for ensuring that it becomes

effective. The PEP is an abstract concept and thus does not have to be a separate component;

it can also be integrated into one or more of the existing services.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 52 of 78 2008-08-25

requirements. This helps reducing errors during runtime as well as it can reduce communication
overhead.

As a service appears as a black box to the requester, semantic annotations can provide more

information about how data is handled and thereby go beyond what can be described using
traditional security policies which in most cases are limited to the communication between requester

and service. For example a requester could require services not to store any data received by the
request. In case a service uses semantic annotations to declare that it will fulfil this requirement, the

requester might prefer this service to another for orchestration. A further advantage would be that it
becomes possible to predict in advance the level of security to which all orchestrated services will be

able comply.

4.7.2.3 Security as a wrapper to services

Semantic descriptions separate the description of security requirements and capabilities of a service
from the actual implementation. “Security as a wrapper” thus means that the behaviour of a service

with respect to security can be changed without modifying the service itself. It therefore eases
modelling security aspects of a whole system at once and makes modifications of a component‟s

code superfluous. For example in case a service should be used in a more critical environment where

higher security requirements apply, the service‟s security requirements can be increased although its
implementation might not be accessible. However “security as a wrapper” must not be taken as a

replacement for careful implementation of security features, it is rather thought to be an additional
concept to help decoupling the security possibilities (the implementation) of a system from its

behaviour (described by policies).

4.7.2.4 Context-dependent security requirements

By providing machine-processable descriptions, semantic web services can provide information
tailored to a user‟s requirements and needs. The user‟s context therefore plays a major role as it

enables automatic reasoning about the requirements a user might have in a certain situation and the
capabilities provided by a service. This applies not only to requirements which will result in a more

personalised behaviour of the service but also to security requirements which may strongly depend
on the current context, e.g. on properties of a device, on the current location of the user or on the

current time.

As an example, imagine a service providing guidance in a public building. The information provided
by the service depends on the user‟s current location as well as her expertise. In addition, access to

the service should be limited to legitimate users which are inside the building. Thus information
about the user‟s context (e.g. her location) is part of the access-control policy of the service. In this

example, the service could provide semantic annotations stating that location data must be provided

to the PEP in order to validate whether a user is allowed to use the service or not. What exactly
“location” means could be derived from an ontology, resulting in different possibilities like GPS, GSM-

localisation or a Bluetooth-localisation.

Thus, semantic descriptions of services will – in combination with a semantic-enabled policy

language – allow expressing context-dependent security requirements which can be enforced at
runtime.

4.7.2.5 Negotiation between requester and service

In order to establish a connection between a requester and a service, both have to agree on a

common security configuration, including algorithms used for encryption and hashing, key lengths,
authentication procedures, different parameters, etc. Thus, both communication partner need to

have a common understanding of the syntax they use to express these mechanisms. However as
Hydra will use dynamically loadable modules for security implementations, the specific security

configuration will usually not be known in advance. Developers should instead focus on the

protection goals they want to apply to a connection and then leave it to the middleware to find
appropriate implementation modules at runtime. Hydra should then automatically select

implementations which support the desired protection goal and are interoperable with the

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 53 of 78 2008-08-25

communication partner's implementation. Semantic definitions of security requirements are therefore
predestined as they allow applying reasoning techniques on the knowledge base consisting of device

ontologies, security requirements and capabilities of a service and the security requirements defined

by the developer. This way, modules which fulfil these various constraints can automatically be
found and applied while developers can specify security requirements by their meaning instead of

their implementations.

4.7.3 Possible Approaches and Related Work

There are a number of different approaches on integrating security aspects into semantic web
services. In this section we will discuss the most important of them and explain how they could

contribute to secure semantic web services in Hydra.

4.7.3.1 Security descriptions for services

In [11] Kagal et al. propose to use OWL-S annotations attached to web services in order to
reference external security policies. These policies describe requirements as well as capabilities of a

service and can thus be used for negotiating a common level of security between requester and
service.

This approach could also be applied to Hydra – it addresses the issue of negotiating security

requirements coming from different domains. An example would be a user joining an unknown
Hydra environment with her Hydra-enabled device. In this case, the services in the environment

have different security requirements and capabilities than the user. The description of these
requirements could be attached to the environment's and the user's services, using OWL-S. In order

to negotiate a common security level, the concepts5 used by the Hydra environment and by the user
should be contained in a common ontology to facilitate the negotiation process. Thus, a common

Hydra security ontology, describing concepts for requirements and capabilities of a service is

recommended6.

4.7.3.2 Semantic policies

In general, the approach of attaching security descriptions to services does not require any special

policy language. Kagal et al. however propose for expressing security policies the language “Rei”
[10] which stands out of the plethora of policy languages by the fact that the concepts which make

up the language itself are represented in ontologies. The idea of using description logic (DL) (e.g.

ontologies) for policy languages has been investigated by several authors and begins to gain
credence. Up to now, besides KAoS [28], Rei seems to be the only policy language which is based

on DL (A comparison of Rei and KAoS can be found in [27]). In addition there are a number of
approaches focussing at translating traditional policy languages to knowledge-based representations

(like OWL-DL) [13] [14] [15]. Although representing the complete policy language as a knowledge

base has the advantage that conventional reasoners can be used as policy decision and -analysing
tools, this might not always be required. For the development of Hydra, it must further be taken into

account that reasoning over DL is much less efficient than evaluation algorithms tailored to a specific
policy language. More pragmatic approaches like [2] try not to map policies to description logics but

to add semantic descriptions to traditional policy languages. This seems to be a more promising
approach for Hydra as it allows using existent, approved and efficient policy evaluation algorithms

and at the same time provides reasoning possibilities in case rule conditions are based on semantic

descriptions. However, more detailed decisions on the choice of policy languages will be made
during the policy manager design process.

5 Concept here is meant in terms of description logic and refers to a class in OWL
6 If user and environment used different ontologies, a mapping between these two would

be required. As in general it is not possible to create a mapping automatically, both have to

agree on a common ontology in advance.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 54 of 78 2008-08-25

4.7.3.3 Discovering secure services

Regarding the discovery of services according to their security properties, Kagal et al. propose using
a “matchmaker” engine in order to look for services fulfilling certain capabilities (e.g. “is able to

encrypt using PGP”). Another approach for semantic discovery is described in [12]. The authors

present the discovery scheme “UbiSearch” which is aims at finding services according to their
semantic descriptions in large-scale ubiquitous computing architectures. Therefore, services are

structured according to a “semantic distance”, meaning the neighbourhood of services which have
similar descriptions. UbiSearch uses an overlay network for resolving queries and thus is suited for

architectures with a large number of different services. While the notion of a semantic distance
appears sensible, the UbiSearch-approach seems to be too complex and too demanding for an

embedded systems middleware like Hydra – especially in terms of communication overhead.

Instead, for the first try a semantic discovery mechanism based on broadcasts or centralised
registries should work out for Hydra. A good example for such a mechanism is the “Semantic

MatchMaker” engine described in [5]. The Semantic MatchMaker is a web service to which other web
services can register announcing their OWL-S descriptions. The Semantic MatchMaker's interface

then accepts queries for capabilities and returns services matching these capabilities7.

4.7.3.4 Identity Management

While coalescing security requirements and capabilities (i.e. policies) with semantic descriptions
probably provides the most benefit to Hydra as a middleware, there are other possibilities to

leverage semantic web services for security aspects: In [4], Chowdhury et al. propose using
ontologies for identity management. These semantically represented identities are used in [22] in

order to realise secure access to semantic web services. Hydra could provide similar mechanisms for

representing identities as an extension to a semantic access control mechanism. To what extend
issues like identity management will be provided by the core Hydra middleware itself is however not

clear yet and has to be further investigated in deliverable D7.3, chapter 7.

4.8 Automatic Generation of SWS proxies for Devices

To enable the Hydra middleware and consequently the Hydra developer to view and use all devices

and services in a heterogeneous fashion, automatic generation of semantic web service proxies will
be necessary for the non-Hydra enabled devices. When a non-Hydra device is discovered and

identified, a proxy for this device is generated using the information in the device and service
ontologies.

The service proxy will expose a web service interface that is semantically enriched using SAWSDL

annotations referring to concepts in the service and device ontologies from which it was generated.
This way, all devices are represented at the level of semantic device as described in D6.2 and are

heterogeneous to the middleware and to developers using the SDK. For developers, some additional
support for domain concepts can also be generated by the SDK. At design time, this may include

automatic code generation to support the concepts that are inputs and outputs to the service. The

lowering and lifting schema mappings can be used to handle this transparently to the Hydra
developer, so that the concepts from the ontologies are first-class entities when composing

applications in the development environment. All Hydra devices that a developer uses in composition
will be semantic devices, where there will at least be a reference in the WSDL to the corresponding

service in the service ontology. This will also be useful if Hydra is to support dynamic service

composition, as the services will already be semantically enriched.

7 A web interface of the Semantic MatchMaker can be tried out at
http://www.daml.ri.cmu.edu/matchmaker

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 55 of 78 2008-08-25

5. Concluding Remarks and Future Work

In this final chapter we briefly describe our plans for future work and summarise our conclusions.

5.1 Future Work

5.1.1 Performance issues

Because Hydra is supposed to create a middleware for embedded devices we have to tackle the

following research questions:

 How do we enable efficient inclusion of embedded devices into semantic web services if

those devices are not able to run semantic web services on their own and how does this
impact the system architecture and the development of Hydra based solutions?

 Can semantic web services be brought to embedded devices and what are the minimum

requirements and also what implications does this have on resource consumption?

5.1.2 Semantic Discovery of Networked Devices and Services

There are several issues to be further investigated for the management of the DAC and the

discovery process. In this (2nd) iteration we have decided that all service composition will occur at
design time. In the following iterations, the Hydra middleware may have to resolve at run time when

a set of devices and services that are present in the network constitute a composite device, and
place this composite device in the Hydra Device Application Catalogue.

The Hydra discovery functions will be able to discover other devices that use a number of different

protocols; Bluetooth, UPnP, Zigbee etc. These may also be able to announce themselves to other
devices using all these protocols. However, not all Hydra devices will be capable of this. The more

limited devices will be able to handle web services (in order to be Hydra devices), and these may
also need some way of announcing themselves on the network.

This work will be further pursued in workpackage 5, task T5.3 “Wireless Devices”, while in
workpackage 6 we will focus on the semantic discovery aspects.

5.1.3 Lightweight Orchestration of Device Services

In the future work, it is possible to take into account the orchestration using real-time service
discovery and planning. The services in the orchestration work-flow can be defined in the terms of

required goals instead of concretely specified services. According to specifications of standards,
OWL-S and WSMO support this approach. OWL-S defines simple processes and WSMO uses so-

called Goals to represent the required ideal services. In the real applications, this approach is often

avoided by pre-computing of defined process sequences. Similarly, as in the case of service
discovery, real-time reasoning with service IOPEs, is really much time consuming, when searching

for suitable service in the work-flow.

5.1.4 Secure Semantic Web Services for Devices

There are still a number of challenges regarding security in combination with semantic web services.
In this section, we will outline some of them and discuss how they could influence the hydra security

architecture. Not all challenges here are real blockers – some of them are just points to be kept in

mind while others are problems which cannot be solved without a reasonable overhead.

5.1.4.1 Appropriate design of ontologies

If ontologies are used to describe security requirements and capabilities, designing the ontology

becomes a security-critical task. The challenge here is that a developer does not only need

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 56 of 78 2008-08-25

knowledge about ontologies but also about security-specific issues. However ontologies provide a
good basis for elaborated analysis tools which can be used to support a developer when designing

security-relevant ontologies. In combination with a well-designed set of predefined concepts and

ontologies, it should be able to cope with this challenge.

5.1.4.2 Protection of ontologies

As soon as ontologies contain security-relevant data, e.g. the description of a service's security

properties, the integrity and authenticity of these ontologies must be ensured. If attackers could
modify the semantic descriptions of services, they could trick the application into using insecure

services, erroneously declared to be secure. In case the service discovery process relies on semantic
descriptions, there exist even more attack vectors, as described below. Possible solutions to this

problem depend among others on the way how ontologies are stored. Especially for decentralised

repositories without any common root of trust, it becomes difficult to guarantee authenticity of
ontologies.

5.1.4.3 Protecting the discovery process

Discovering services just by querying for required attributes carries the risk of falsely described
services – intentionally or not. If an attacker could announce services with arbitrary semantic

descriptions, she can easily carry out denial of service attacks on the discovery mechanism. For

example by declaring a service by fulfilling the maximum level of security, the discovery mechanism
will prefer the attacker's service to every other service and thereby potentially render the whole SOA

useless. Solving this problem requires some authority which appraises semantic description
compared to the actual behaviour of the service. Depending on what is described in the service's

annotations, this might even require the authority to have access to the service's source code which

is an unrealistic assumption. Reputation mechanisms can help to at least reduce the risk of falsely
described services. However, they require a notable overhead in terms of communication and

implementation. Simply assuming every description to be correct is of course trivial but can be
feasible in closed-world scenarios where attackers cannot create arbitrary services.

5.1.4.4 Interoperability with non-semantic services / requesters

When using semantic web service technologies as a basis for security, one must decide whether the
interoperability between semantic and non-semantic web services should be kept up. An example for

this would be a non-Hydra based application which should still access some managers of the Hydra

middleware, e.g. a non-Hydra application making use of a security manager available in the
environment. The basic difference between keeping up the interoperability and abandoning it is that

in the former case, requirements and capabilities cannot be expected to be resolved automatically.
During the next steps, it should be evaluated which of both approaches is more suited for Hydra and

which disadvantages a mixture of semantic and non-semantic services could have for the

middleware.

5.1.5 Caching Principles

While the semantic technologies in combination with the service oriented architecture of Hydra,
enhance the functionality and usability of the Hydra middleware, the quality of service must also be

attained to sufficient levels. This may pertain to the accessibility of both devices and device
services. As many Hydra applications will be designed for networked and distributed environments,

it is foreseen that caching techniques could be exploited on several levels in the Hydra architecture

to improve accessibility and performance of device and service use.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 57 of 78 2008-08-25

5.2 Conclusions

In this document we have described and analysed different standards for semantic web services. We
continued with an analysis of the requirements for semantic interoperability in Hydra and described

our approach to semantic web services design.

To summarise, Hydra‟s technological innovations in Semantic Web Service Design will be achieved in

the following areas:

 Ontology-based Device and Service Descriptions: The whole Hydra middleware will be driven

from ontology descriptions for devices and services, thus making Hydra a highly configurable
solution that can be easily deployed in many different applications.

 Semantic Discovery and Advertising of Networked Devices and their Services: Hydra will use

a multi-layered approach to device and service discovery covering physical, network and
semantic discovery. The physical discovery detects devices, irrespective of which

communication protocol they use. The network discovery is based on UPnP and makes a
device know to the rest of the Hydra network. Finally the semantic discovery detects the

type of device, depending on the device ontology.

 Lightweight orchestration and composition of Device Services: We advocate a lightweight

approach to combining and composing calls to different device services. We will build on
principles from approaches like BPEL, however existing orchestration approaches appear to

be too complex and resource intensive to be used in Hydra. Therefore we will design a
language that is simplified and tailored for use with devices.

 Ontology-driven Invocation and Execution of Device Services: We will use an approach

based on a combination of the Hydra Device Ontology and SAWSDL for semantic annotation

of device services to allow applications and other devices to dynamically invoke and execute
services.

 Secure Semantic Web Services for Devices: In Hydra we will use semantic annotations to

express security requirements and constraints on device services. This will play an important
role both for discovery of services as well as invocation and execution of services.

 Automatic generation of SWS Device Proxies: To enable the Hydra middleware and

consequently the Hydra developer to view and use all devices and services in a
heterogeneous fashion, automatic generation of semantic web service proxies will be

necessary for the non-Hydra enabled devices. When a non-Hydra device is discovered and

identified, a proxy for this device is generated using the information in the device and
service ontologies.

 Caching principles: As many Hydra applications will be designed for networked and

distributed environments, it is foreseen that caching techniques could be exploited on
several levels in the Hydra architecture to improve accessibility and performance of device

and service use. As mentioned previously, work on caching principles will be part of our

future work, rather than in this iteration.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 58 of 78 2008-08-25

6. References

[1] Alonso, G. Web Services – Concepts, Architectures and Applications. Springer, 2004.

[2] Ardagna, C., Damiani, E., Vimercati, S.d. and Samarati, C.F.P. Offline Expansion of XACML Policies

Based on P3P Metadata Web Engineering, , 2005, 363-374.
[3] Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic Web. Scientific American (May 2001). 28-

37.
[4] Chowdhury, M.M.R., Gomez, J.M., Noll, J. and Crespo, A.G. SemID: Combining Semantics with

Identity Management Proceedings of SECURWARE: International Conference on Emerging Security
Information, Systems and Technologies, 2007, , 2007.

[5] Denker, G., Kagal, L., Finin, T., Paolucci, M., Srinivasan, N. and Sycara, K. Security For DAML Web

Services: Annotation and Matchmaking Proceedings of the Second International Semantic Web
Conference (ISWC 2003), , 2003, 335-350.

[6] Harmelen, F.v. and I. Horrocks FAQs on OIL: The Ontology Inference Layer. IEEE Intelligent
Systems, (Nov./Dec. 2000). 69-72.

[7] Hendler, J. and McGuinness, D. The DARPA Agent Markup Language. IEEE Intelligent Systems
(Nov./Dec. 2000). 69-72.

[8] Huhns, M.N. and Singh, M.P. Service-Oriented Computing: Key Concepts and Principles. IEEE
Internet Computing, 9 (1). 75-81.

[9] Hydra. D6.2 MDA Design Document Hydra Project Deliverable, IST project 2005-034891, 2007.

[10] Kagal, L. Rei: A Policy Language for the Me-Centric Project Enterprise Systems Data Management

Laboratory, HP Laboratories Palo Alto, 2002, .
[11] Kagal, L., M. Paoucci, N. Srinivasan, G. Denker, T. Finin and Sycara, K. Authorization and Privacy for

Semantic Web Services IEEE Intelligent Systems (Special Issue on Semantic Web Services) (19). 50-
56.

[12] Kang, S., Kim, D., Lee, Y., Hyun, S.J., Lee, D. and B. Lee, B. Semantic Service Discovery Network for
Large-Scale Ubiquitous Computing Environments. ETRI Journal (). 545-558.

[13] Kolovski, V., Hendler, J. and Parsia, B. Formalizing XACML Using Defeasible Description Logics WWW
'07: Proceedings of the 16th international conference on World Wide Web, ACM, University of
Maryland - College Park 2007, 677-686.

[14] Kolovski, V., Hendler, J., Parsia, B. and Katz, y. Expressing WS-Policies in OWL Workshop on Policy
Management for the Web - 14th International World Wide Web Conference, , 2005.

[15] Kolovski, V., Hendler, J., Parsia, B. and Katz, y. Representing Web Service Policies in OWL-DL 4th
International Semantic Web Conference, ISWC 2005, , 2005.

[16] Kopecký, J., Moran, M., Vitvar, T., Roman, D. and Mocan, A. WSMO Grounding WSMO Working
Draft, Available at: http://www.wsmo.org/TR/d24/d24.2/v0.1/, 2007.

[17] Kopecký, J., Roman, D., Moran, M. and Fensel, D. Semantic Web Services Grounding Proceedings of
the International Conference on Internet and Web Applications and Services (ICIW'06), Available:

http://dip.semanticweb.org/documents/Kopecky-Semantic-Web-Services-Grounding.pdf, 2006.
[18] Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B.,

Payne, T., Sabou, M., Solanki, M., Srinivasan, N. and Sycara, K. Bringing semantics to web services:
The OWL-S approach Int. Workshop on Semantic Web Services and Web Process Composition
(SWSWPC 2004), San Diego, CA, 2004.

[19] Martin, D., Paolucci, M. and Wagner, M. Bringing Semantic Annotations to Web Services: OWL-S

from the SAWSDL Perspective. The 6th International Semantic Web Conference and 2nd Asian
Semantic Web Conference (ISWC/ASWC2007), Busan, South Korea, 2007, 337--350.

[20] McGuinness, D.L. and Harmelen, F.v. OWL Web Ontology Language Overview W3C
Recommendation: http://www.w3.org/TR/owl-features/, W3C, 2004.

[21] McIlraith, S.A., Son, T.C. and Zeng, H. Semantic Web Services. IEEE Intelligent Systems (March

2001). 69-72.

[22] Noll, J., Chowdhury, M.M.R., Kálmán, G. and Gomez, J.M. Semantically supported Authentication and
Privacy in Social Networks Proceedings of SECURWARE: International Conference on Emerging
Security Information, Systems and Technologies, 2007, , 2007.

[23] Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K. Importing the Semantic Web in UDDI -
Services and the Semantic Web (ESSW02), 2002.

http://www.wsmo.org/TR/d24/d24.2/v0.1/
http://dip.semanticweb.org/documents/Kopecky-Semantic-Web-Services-Grounding.pdf
http://www.w3.org/TR/owl-features/

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 59 of 78 2008-08-25

[24] Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K. Semantic Matching of Web Services
Capabilities International Semantic Web Conference (ISWC2002), 2002.

[25] Paolucci, M., Wagner, M. and Martin, D. Grounding OWL-S in SAWSDL The International Conference
on Service Oriented Computing, Vienna, Austria, 2007.

[26] Polleres, A. and Lara, R. A Conceptual Comparison between WSMO and OWL-S WSMO Working
Group working draft, Available at: http://www.wsmo.org/2004/d4/d4.1/v0.1, 2005.

[27] Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N. and Uszok., A. Semantic Web

Languages for Policy Representation and Reasoning: A Comparison of KAoS, Rei, and Ponder The
SemanticWeb - ISWC 2003, Springer 2003, 419-437

[28] Uszok, A. and Bradshaw, J. KAoS Policies for Web Services 2003, .

[29] W3C-OWLs. OWL-S: Semantic Markup for Web Services W3C Member Submission :
http://www.daml.org/services/owl-s/1.1/overview/, W3C, 2004.

[30] W3C-SAWSDL. Semantic Annotations for WSDL and XML Schema. Farrell, J. and Lausen, H. eds.
W3C Recommendation: www.w3.org/TR/2007/REC-sawsdl-20070828/ W3C, 2007.

[31] WSML. Web Service Modeling Language (WSML) W3C Member Submission :
http://www.w3.org/Submission/WSML/, W3C, 2005.

[32] ESSI WSMO working group. 2008-01. http://www.wsmo.org/wsml/

[33] ESSI WSMO working group. 2008-01. http://www.wsmo.org/

http://www.wsmo.org/2004/d4/d4.1/v0.1
http://www.daml.org/services/owl-s/1.1/overview/
http://www.w3.org/TR/2007/REC-sawsdl-20070828/
http://www.w3.org/Submission/WSML/
http://www.wsmo.org/wsml/
http://www.wsmo.org/

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 60 of 78 2008-08-25

7. Appendix: Requirements for Hydra Semantic Web

Services

This section will list the relevant Volere requirements that are addressed in this design document.

The table lists the current requirements related to Service Oriented Architecture (SOA) and Semantic
Web Services (SWS). Work on the requirements continues throughout the project.

ID Description Rationale Fit Criteria

17 When applicable, middleware

interfaces are exposed by WSA-

compatible services

Web Service Architecture

(WSA;

http://www.w3.org/TR/ws-
arch/) introduces a common

definition of what a web
service is and describes

minimal characteristics of

what is common to all web
services. When web services

are used in Hydra, they
should comply to WSA

In min. 90% of all cases,

Hydra web service

interfaces are realized as
WSA-compatible web

services. In the remaining
cases, web services use

proprietary formats.

21 Hydra should be a Service-

Oriented Architecture (SOA)

Hydra should be a SOA per

the Description of Work of
the project

Hydra is compatible to the

SOA-definition by OASIS:
http://www.oasis-

open.org/committees/down

load.php/19679/soa-rm-
cs.pdf

104 Automatic Discovery of Services It should be possible to

configure the middleware to
discover available services

that meets defined criteria.

8 of 10 services are

automatically discovered.

111 Dynamic Web Service Binding Middleware should be able to
after device discovery and

categorisation expose a new

device as a web service that
can be called without re-

compilation.

New devices are callable
and controllable in 7 out of

10 cases.

112 Dynamic Web Service Generation Configuration tool that is able
to generate the necessary

interfaces to wrap the device
functionality as a web

service.

7 of 10 device
functionalities are

automatically represented
as web services

113 Composition (of services and
devices)

In order to enhance or
replace application level

functions it will be useful to

be able to compose services
and devices from different

providers and/or
manufacturers into high level

Service composition during
design-time is possible.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 61 of 78 2008-08-25

services/devices

114

Semantic enabling of device web

services

Middleware should be able to
attach semantic descriptions

to device web services based
on device ontology.

7 of 10 device are
semantically enabled.

129 Support for Semantic Web

Standards for Device
Communication

Middleware should support

different semantic web
standards, including OWL-S,

WSMO, and selected parts of

WS-*

Support for at least OWL-S

and WSMO

157 Availability of combined services A developer wants to easily

access a higher level service

which is in fact a combination
of multiple services

High level services,

consisting of at least two

basic services, can be
composed manually by the

developer but this will not
be done automatically.

158 There should be a hook-up-

service

When the developer creates

a new application/device he
wants to have a broker that

can supply him with all

available services that match
certain criteria.

A request for a specific

service according to specific
keywords results in the

provision of the

corresponding service in 8
out of 10 cases

159 Service brokers must be

organized in a hierarchical way

With hierarchical brokers the

system becomes more robust
and scalable. Users do not

want that everything acts up
in case of a fire and a broker

goes down. Additionally

hierarchical brokers allow for
having certain rules/services

only within a sub-domain.

Brokers are organized

hierarchically

160 Search masks for device/service
discovery

When the developer needs a
service he wants to be able

to define search criteria for

discovery of services

Search criteria can be
specified and are respected

by search services

164 Support for Service standards Middleware should support

widely used standards for

service description,
discovery, orchestration and

execution.

Standards defined by W3C

and OASIS implemented.

180 Service mediating network
connections according to

different qualities

There should be a service
which lists different network

connections depending on
specified properties

(connection speed,

encryption). Devices can then
negotiate such connections

with remote devices, without
the need to take care about

In 9 out of 10 cases devices
should be able to

automatically negotiate
their networking condition.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 62 of 78 2008-08-25

the networking details

185 Middleware provides basic
services

In order to program AmI
applications, the middleware

must provide basic services.
This makes life easier for

application developers .Basic
services provide e.g.

methods to query available

devices and services or to
pass messages between

components

Middleware provides a set
of basic services that at

least contain basic
functionality, that is needed

by all services, like
communication and a

service / device registry.

196 Basic Service Registry Services should register at a
basic service/module of the

middleware in order to
provide a base for service

orchestration

All services should be
itemised at the Basic

service registry

197 Services define their

communication needs in terms of
needed QoS parameters

The services define their

communication needs in
terms of needed QoS

parameters (needed
bandwidth, needed quality...)

without specifying the
technical details. The

middleware is free to choose

the appropriate networking
matching the specified needs

Every service specifies its

QoS parameters

198 A service broker is responsible to

provide services according to
specific keywords

Service discovery should be

enhanced by a service broker
module/service as basic

service of the middleware
that enables the search for

services according to specific

keywords

Requests according to

specific keywords will be
provided a corresponding

service in 8 out of 10 cases.

207 Service selection by context In order to select an
appropriate service for a

specific task, contextual
information, like the spatial

position, must be taken into

account. Hydra must provide
a method to specify a desired

service by contextual
parameters. For example, if a

certain room in a building is
specified in a search request

for a service, only services

are returned that are relevant
in the current user‟s location

and context.

In search requests for a
specific service, contextual

information like a spatial
position is allowed.

209 Middleware has a service for
providing information about the

technical

In order for the services to
query the available

infrastructure the middleware

A services at the
middleware provides

information about more

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 63 of 78 2008-08-25

environment/infrastructure should provide such a service than 95% of the technical
environment/infrastructure

211 There are components/services

in the middleware that integrate
subsystems

The integration of basic

systems to subsystems
should ease the configuration

of higher level services.
Higher level services could

then consist of a combination

of basic systems

It should be possible to

combine basic services to
higher level services. At

least one higher level
service relying on a

combination of basic

services exists.

214 A decision component/service
should exist

There should be a decision
component that is able to

take actions according to
specified rules or reasoning

components.

At least one decision
component in the

middleware

216 The middleware should have a
graceful degradation service

Services should be organised
in a cascade of services in

order to allow an

orchestration of services
providing best possible

services down to basic
services automatically,

according to their availability

Service orchestration is
possible n a hierarchical

way. An automatic selection

of the best service is
possible within max. 500

msec.

217 The middleware should ensure
high robustness of services

In order to ensure the service
support of important

components in the system,

the middleware should
provide a highly robust

service structure.

Breakdown of crucial
services of the middleware

in less than 1 case per 100

hours of operation.

225 Interactions and consequences
of changes to services on other

services should be highlighted

The developer should have a
tool that helps him

understand the complex
interactions of services and

the possible consequences of

changes on one middleware
service to other middleware

services

A service monitor that is
able to show interactions

with other services is
implemented

229 Services are responsible for
authentication

The single service should be
responsible for authentication

request in order to ensure a
robust and secure system

All security critical services
trigger authentication

requests

239 Automatic service diagnostic for

security relevant services

Security relevant services

should provide a self-

diagnostic services that
provides an overview of all

security-relevant features

Self-diagnostics in all

security relevant services

implemented

290 Share service orchestration
between users

Service orchestration
definition should be shared

between developer users, in
order to allow a distribution

Service orchestration
definitions can be shared

between users

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 64 of 78 2008-08-25

of useful service
orchestration to other

developers

291 Quality of Service as search
criteria for service selection

The selection of appropriate
services for a given task

requires the reflection of
QoS-related search criteria

such as cost, performance,

etc.

QoS-criteria can be used in
the selection of services in

95% of all cases

320 Separate domain-oriented
services and user interface

services architecturally

This is a standard
architectural design tactic to

enhance modifiability

90% of the modules of the
architecture properly

separate layers for domain
services and interfaces.

325 Support aggregation and

separation of devices and
services

Devices and services may

exist in a separate application
where they should not be

influenced by nearby

(wireless) devices such as in
the case of an apartment.

Thus it should be possible to
view a set of services/devices

as an aggregate that is
separated and isolated from

other sets of services/devices

Check support for

aggregation and separation
of devices/services

329 Middleware provides domain-

independent services

A lot of the services needed

in the apartment scenario are
also needed in other

scenarios (persistence,
logging, visualization, ...).

These should be abstracted
and built and provided as

part of Hydra

Large parts of the building-

automation scenario can be
built by reusing

configurable services from
across other application

domains.

358 Developer must be able to

semantically define security
requirements

If developers are to make

devices that can co-operate
through other protocols and

security mechanisms, they
have to be able to describe

the inherent security

requirements in a semantic
interoperable language. It is

not enough just to use a
specific protocol's security as

this does NOT tell WHY he
uses it and WHAT he really

needs for the application to

proceed.

On the one hand Hydra

supports the semantic
description of security

requirements and provides
mechanisms to translate

those requirements into

device specific protocols
automatically. On the other

hand Hydra provides means
in order to analyse

(prospectively) existing
device specific proprietary

security protocols. Hydra

can detect incompatibilities
of different protocols'

security mechanisms.

366 Services should run on
embedded devices

Service-orientation is a good
match for many embedded

devices. Web services will

Hydra supports services on
embedded devices (Initial

target should be Develco's

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 65 of 78 2008-08-25

provide a gateway to many
applications and it would be

beneficial to be able to
structure all of the

communication in a system

using the same primitives.
Depending on the resources

(energy, processing capacity)
available such a service may

run on the device or on a
proxy

DevCom 02 ZigBee module)

389 Service browsing in device

ontology

It must be possible to view

services as central building

blocks, thus an application
developer should be able to

browse the device ontology
from a service perspective, in

addition to a device
perspective.

A developer can find

services and use them in

development, without an a
priori knowledge of the

devices that implement the
services.

394 Stateful service orchestration In order to specify service

workflows we need to be

able to keep state

between the execution of

the stateless services.

Service orchestration

can be done by creating

service workflow

definition.

419 Backbone - Device services and

resources announcement
through the Gateway

Each device either Hydra-

enabled or non-Hydra-
enabled (through proxies)

must announce its services
and resources in the

Backbone through its

Gateway

90% of devices announce

their services and resources
in the Backbone through

the Gateway

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 66 of 78 2008-08-25

8. Appendix: SWS related Managers

In deliverable D6.2 “MDA Design Document” all managers of WP6 are specified. Here we include the
three that is most relevant to the Semantic Web Service Design for reference purposes.

8.1 Application Service Manager

8.1.1 Purpose

The purpose of the Application Service Manager is to discover, create and execute semantic (web)

services on top of devices. It adds a semantic layer and complements above the Application Device

Manager with a service perspective. Services might map to several device functionalities.

Main Functions:

 Service discovery

 Semantic service creation (service orchestration/clustering and mapping to device

service)

8.1.2 Related WP6 requirements

[Hydra-104] Automatic Discovery of Services

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: It should be possible to configure the middleware to discover available services that meets
defined criteria.

Source: St. Augustin

Fit Criteria: 8 of 10 services are automatically discovered.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

 [Hydra-113] Composition (of services and devices)

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: In order to enhance or replace application level functions it will be useful to be able to compose
services and devices from different providers and/or manufacturers into high level
services/devices

Source: WP6 MDA Focus Group, WP6 eHealth Focus Group

Fit Criteria: Service composition during design-time is possible.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-114] Semantic enabling of device web services

Status: Part of specification

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-104
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-113
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-114

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 67 of 78 2008-08-25

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to attach semantic descriptions to device web services based on
device ontology.

Source: WP6 SoA Focus Group

Fit Criteria: 7 of 10 devices are semantically enabled.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[Hydra-119] Domain modelling support

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The middleware and IDE should be able to interface with application domain frameworks
representing core concepts and functions of specific application domains. These could in the
most basic form be represented by UML Profiles, or domain ontologies.

Source: WP6 MDA focus group

Fit Criteria: The Hydra IDE supports at min 2 defined domain modelling frameworks.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

Dependencies: 117

[Hydra-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-129] Support for Semantic Web Standards for Device Communication

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should support different semantic web standards, including OWL-S, WSMO, and
selected parts of WS-*

Source: WP SoA Focus Group

Fit Criteria: Support for at least OWL-S and WSMO

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-119
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-129

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 68 of 78 2008-08-25

[Hydra-325] Support aggregation and separation of devices and services

Status: Part of specification

Project: Hydra

Requirement Type: Functional

Workpackage: WP6

Rationale: Devices and services may exist in a separate application where they should not be influenced by
nearby (wireless) devices such as in the case of an apartment. Thus it should be possible to
view a set of services/devices as an aggregate that is separated and isolated from other sets of
services/devices

Source: UAAR focus group

Fit Criteria: Check support for aggregation and separation of devices/services

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[Hydra-372] Interfacing with external systems

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Searching and using external services in decision support and application intelligence must be
supported

Source: WP 6 Focus Group, WP2 Input

Fit Criteria: Access to external systems using web service protocols (WS-I Basic Profile) is supported

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[Hydra-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-325
https://hydra.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=10000
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-372
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 69 of 78 2008-08-25

8.1.3 Components

Figure 19: Application Service Manager

Service Discovery Module

One of the major functions of the Service Manager is to discover new services in the network. This is

taken care of by the Service Discovery Module. It will use the Device Manager to find out about
services offered by different devices.

Semantic Service Catalogue:

The Semantic Service Catalogue keeps track of and manages all service offered within one

application. It can be queried about existing services. It can also provide semantic service
interfaces for the different services upon request.

Semantic Service Generator

The Semantic Service Generator is responsible for generating a semantic service interface for
services offered by devices. It will create a software wrapper around the device services which

other modules can use. The generated software will support a semantic-based service interface.
It will support several semantic web standards, at least OWL-S and WSMO.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 70 of 78 2008-08-25

8.1.4 Dependencies

Application Service Manager, Application Ontology Manager and Application Security Manager

8.1.5 Interface

string ApplicationServiceManager::ProcessErrorMessage (XmlNode theMessage)

Processes an error message.

Parameters:
theMessage The error message as an XML Node.

Returns:
A description of the error.

string ApplicationServiceManager::ProcessErrorMessageString (string theMessage)

Processes an error message.

Parameters:
theMessage The error message as a string.

Returns:
A description of the error.

bool ApplicationServiceManager::HasService (string deviceid, string serviceid)

Checks if a service is available.

Parameters:
service serviceid The service name.

 deviceid The device to be queried

Returns:
True if service is available otherwise false.

string ApplicationServiceManager::GetServiceDescription (string devicetype, string serviceid)

Retrieves a device description.

Parameters:
devicetype The device type as a string.

serviceid The service id as a string.

Returns:
A string containing a service description in XML format.

XmlNode ApplicationServiceManager::GetServiceDescriptionAsXML (string devicetype, string
serviceid)

Retrieves a device description.

Parameters:
devicetype The device type as a string.

serviceid The service id as a string.

Returns:
An XmlNode containing a service description.

string ApplicationServiceManager::GetServices(string type)

Retrieves a list of available services.

Parameters:
type The device service type as a string.

Returns:
A string containing the list of available devices services in XML format.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 71 of 78 2008-08-25

XmlNode ApplicationServiceManager::GetServicesAsXML (string type)

Retrieves a list of available services.

Parameters:
type The device service type as a string.

Returns:
An XmlNode containing the list of available service.

string ApplicationServiceManager::Invoke(XmlNode invokeMessage)

Generic method to invoke any method in a service on a device.

Parameters:
invokeMessage The invoking message containing serviced, methodname, parameters, values

Returns:
The result of invoking the method.

8.2 Application Orchestration Manager

8.2.1 Purpose

The Application Orchestration Manager provides support for composite services and workflows. It is
an execution engine for the Hydra Device Orchestration Language (“DOLL”).

Main Functions:

 Execute call sequences consisting of invocations of Device services

 Provide scheduling of notifications and service calls for Hydra applications

8.2.2 Related WP6 requirements

[Hydra-113] Composition (of services and devices)

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: In order to enhance or replace application level functions it will be useful to be able to compose
services and devices from different providers and/or manufacturers into high level
services/devices

Source: WP6 MDA Focus Group, WP6 eHealth Focus Group

Fit Criteria: Service composition during design-time is possible.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-392] Rules for selection of alternative devices

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The developer user should be able to specify how devices can replace or complement each
other. This is relevant in situations when a device fails and another device exists which can
provide a replacement service, or, when different levels of quality of service are available.

Source: WP6 eHealth focus group

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-113
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-392

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 72 of 78 2008-08-25

Fit Criteria: In the SDK, constructs are available that allow the developer to specify rules for when and how
devices and services can be interchanged and combined.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[Hydra-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 73 of 78 2008-08-25

8.2.3 Components

Orchestration Manager

Orchestration Manager

Workflow Execution ManagerSchedule Manager

Orchestration Manager Interface

Application Device Manager

Figure 20: Application Orchestration Manager

Schedule Manager: The scheduler is responsible for running tasks or notifying applications when a

specific criterion is met. Such a criteria can be a specific (possibly recurring) time, system startup,

system shutdown.

Workflow Execution Manager: The workflow execution module interprets process descriptions

and executes a set of services. These processes may represent a complex service composed of other
services or part of a Hydra application.

Dependencies: Application Device Manager

8.2.4 Interface

XmlNode OrchestrationManager::LoadProcessDescription (XmlNode processDescription) Loads a
process description into the Orchestration Manager.

Parameters:
processDescription The ontology deviceId.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 74 of 78 2008-08-25

Returns:
A XML node containing the result of the operation and invocation data or the description of any errors that

occurred during method invocation.

XmlNode OrchestrationManager::ListProcessDescriptions () Lists process descriptions previously loaded into

the Orchestration Manager.

Parameters:

Returns:
A XML node containing all process descriptions loaded into the Orchestration Manager.

XmlNode OrchestrationManager::InvokeProcessDescription (XmlNode invocationData) Invokes a process

description previously loaded into the Orchestration Manager.

Parameters:
invocationData An XML node with data identifying the process and invocation data for invocation.

Returns:
A XML node containing the result of and data returned from the invocation or the description of any errors that

occurred during invocation.

8.3 Device Device Manager

8.3.1 Purpose

The Device Device Manager handles several service requests and manages the responses.

Main Functions:

 Maps requests to device services

 Response generation

 Advertising Hydra device description

 Advertises device services

8.3.2 Related WP6 requirements

[Hydra-91] Any Hydra device should have an associated description

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: For management, search and discovery purposes, all Hydra enabled devices should be
described (classified) according to the Hydra device ontology.

Source: WP6 MDA scenario

Fit Criteria: Any device associated to a Hydra application is also included in the Hydra device ontology, and
its description can be retrieved.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-92] Rule-based configuration of devices

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 75 of 78 2008-08-25

Rationale: The possibility for the developer to specify device behaviour using rules. It should be possible to
derive and re-use rules from pre-existing or generic rule sets for application domains.
Possibility to hide device specific details.

Source: WP6 MDA Focus Group and WP6 eHealth focus group

Fit Criteria: The functionality (services) of a device is accessible (by user or application) thru a rule-based
interface.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-108] Device discovery

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to detect new device that enters the network

Source: St. Agustin

Fit Criteria: 7 of 10 devices are discovered

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[Hydra-109] Device Virtualization

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The complexity of devices may be hidden, or simplified, by means of virtual device interfaces;
these would correspond to "views" on device descriptions as provided by the Hydra device
models (ontologies).

Source: WP6 MDA scenario focus group

Fit Criteria: An existing virtualization can be used to find exactly one proper Hydra device.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[Hydra-111] Dynamic Web Service Binding

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to after device discovery and categorisation expose a new device as
a web service that can be called without re-compilation.

Source: WP6 SoA Focus Group

Fit Criteria: New devices are callable and controllable in 7 out of 10 cases.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

very high

[Hydra-114] Semantic enabling of device web services

Status: Part of specification

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-108
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-109
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-111
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-114

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 76 of 78 2008-08-25

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to attach semantic descriptions to device web services based on
device ontology.

Source: WP6 SoA Focus Group

Fit Criteria: 7 of 10 devices are semantically enabled.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[Hydra-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 77 of 78 2008-08-25

8.3.3 Components

Figure 21: Device Device Manager

Advertise

This module is responsible for broadcasting the existence of the device to the outside world. It will

support several discovery protocols, at least UPnP (Universal Plug and Play).

Request Mapping

This module maps a request from an outside caller to an internal service in the device.

Response Generator

This module maps translates the result of an internal service in the device to a response to the

caller.

Service Description

This module can advertise and provide the service description of the device.

Hydra D6.3 Semantic Web Services Design Document

Version 1.1 Page 78 of 78 2008-08-25

8.3.4 Dependencies

Device Service Manager

8.3.5 Interface

string DeviceDeviceManager::RegisterError(string property, string errorcode)

Registers an error condition.

Parameters:
property The error property as string.

errorcode The error code as string.

Returns:
A string containing the registered error.

string DeviceDeviceManager::SendErrorMessage(string message)

Sends an error message for a specific device.

Parameters:
message The error message as string.

Returns:
A string containing the sent error message.

string DeviceDeviceManager::Invoke(string serviceid, string methodName, string parameters,
string values)

Executes a specific method for a service (using the device service manager).

Parameters:
serviceid The serviceid as string.

methodName The methodName as string.

parameters A comma delimited string with the parameter names.

parameters A comma delimited string with the parameter values (Matched against "parameters").

Returns:
A string indicating the result of the execution.

string DeviceDeviceManager::GetDeviceStatus ()

Retrieves the device status (using the device service manager).

Returns:
A string with the device status.

string DeviceDeviceManager::AddDAC(string dacaddress)

Adds a device application catalogue to this device list of catalogues when the device is discovered.

Returns:
A string with the device status.

string DeviceDeviceManager::GetDACList()

Returns the list of device application catalogues where the device has been discovered.

Returns:
A string with the device application catalogues.

