o)

HYDRA_:i V€

Contract No. IST 2005-034891

Hydra

Networked Embedded System middleware for
Heterogeneous physical devices in a distributed architecture

D12.9 - Final External Developers Workshops
Teaching Materials

Integrated Project
SO 2.5.3 Embedded systems
Project start date: 1st July 2006 Duration: 48 months
Published by the Hydra Consortium - version 1.0
Coordinating Partner: Fraunhofer FIT
Project co-funded by the European Commission

within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Public

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Document file:
Work package:

Task:

Document owner:

D12.9 - Final External Developers Workshops Teaching Materials - 1.0 - final.doc

WP12 - Training

T12.1

Document history:

Atta Badii (University of Reading)

0.1 Atta Badii, Junaid Raja 12-03-2010 |Initial TOC
Khan, Michael Crouch,

Sebastian Zickau (UR)

0.2 Atta Badii, Junaid Raja 17-03-2010 |Restructured TOC in preparation
Khan, Michael Crouch, for consortium discussion and
Sebastian Zickau (UR) assigning of responsibilities

0.3 Atta Badii, Junaid Raja 24-03-2010 |Start to add content and source
Khan, Michael Crouch, references
Sebastian Zickau (UR)

0.5 Peeter Kool, Matts Ahlsen |22-04-2010 |Added contributions by partners,
(CNet), Sascha Effert used partner’s material
(UP), Pablo Antolin Rafael,

Francisco Milagro Lardies
(TID), Julian Schuette,
Tobias Wahl (SIT),
Andreas Zimmermann
(FIT), Klaus Marius
Hansen (UAAR)

0.7 Atta Badii, Junaid Raja 29-04-2010 |Revision and added content:
Khan, Michael Crouch, Commons, Event Context and
Sebastian Zickau (UR) Policy Frameworks (IDE, SDK)

0.8 Atta Badii, Junaid Raja 30-04-2010 |Formatting, merging, cleaning
Khan, Michael Crouch,

Sebastian Zickau (UR)

0.9 Atta Badii, Junaid Raja 14-05-2010 |Including reviewer’'s comments
Khan, Michael Crouch,

Sebastian Zickau (UR)

1.0 Atta Badii, Junaid Raja 14-05-2010 |Final version submitted to the EU
Khan, Michael Crouch,

Sebastian Zickau (UR)
Version 1.0 Page 2 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Internal review history:

Reviewed by Date Comments
Jorge Irazola, Andrea Guarise (INN) 13/05/2010 | See comments below
Julian Schiitte (SIT) 13/05/2010 See comments below

Version 1.0

Page 3 of 157

30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Table of Content
1. Executive SUMMAIY ..iicciiiimimrmrssssssasssasssasssasssasssasssasssanssanssnnssnnsnnnsss 9
. J 2 oo Yo [T ot f ' Y 1 10
2.1 Purpose, context and scope of this deliverablecccooiiiiiiiiiiiiiiinin e, 10
2.2 BaCKgrOUNd . .uiiiiiiiii i e 10
3. Hydra Architectureciiciiiiiii i i rrr v ra s s s s s s s s s r s s s nmnnmnnnnn 11
3.1 Device ClassifiCationoccvieiiiiii e 12
3.2 ApPlications @anNd DaVICES ..iiiiiiiiiii i e e e e e e e 13
3.3 APPIICAtIONS ittt e 13
A o Y e [= T B AV ol PP 13
3.5 SEMANTIC DOVICES vttt it i e e e e e 14
TSI Y70 L= T Y o] o 13 14
3.7 Application Templatesccooviiiiiii 14
3.8 The SDK and the DDK ... it i i e e e e e e aaeeae e anesaneenes 15
4. Installing the Hydra Middlewareccccveiimiie i nnsinnssnnssnnssnnssnnssnnnsnnnss 16
4.1 PrerEQUISIEES tut ittt i e 16
4.2 Required BUNAIESciviiiiiiiiiiiiiii e 16
4.2.1Core required bUuNAIEScviiiiiiii 16
4.2.2Hydra bundles ..o 17
4.3 Crypto Manager SeTUPD ... ittt aa e 17
Y AN o WY 1= g | 18
4.5 RUNNING the framework ..o e e 18
5. Software Development Kit.......ococimiiimiimneiierriesesnessnmsenmsesnnsesnnsasnnnases 21
ST R o A7 L= T @0 0 o 1.4 o o 1= S 21
5.1.1Hydra Middleware APL.......coiiiiiii i 21
5.1.2Hydra Middleware Clients......cciiiiiiiiiiiic e 21
5.1.3Hydra Configurator.......coiiiii e 22
IV N = 0o o G 1 = T = T = 24
5.2.1Hydra Definition of Device To Device Communication 24
5.2.2The Peer-to-Peer Network Architecturecoooviiiiiiiiiiiicii 25
oG 1 = [To 1= = PP 26
5.2.4Main FUNCLONAltiES . ouuiriii i e e 26
5.2.5Hydra Web Service Providerccooviiiiiiiiiiiii e 26
5.2.6CHYPLO HIDS .oiiiiiiiiiii i ettt e e 28
5.3 Device Application Cataloguec.oiviiiiiiiii e 31
5.3.1The DAC DrOWS el it aaea 31
5.3.2The Graphical BrOWSErc.i i e aeanens 32
5.4 Discovery Manager (Framework)ovoeiiiiiii it eeaae e 38
5.4.1PhySICal DiSCOVEIY . ettt ettt ae st e s aa e s e eaneanennens 39
5.4.2EXEernal DiSCOVEIY ..uuiiiiiiiiii ittt ettt e e nenneaneanens 40
5.4.3S5emMantiC DiSCOVEIY .. .uiiieiii i ae e aneeannennees 41
SN0 o) o] [oTe AV /- g = o [T o PP 42
5.6 EVENE MANAg eI . .uuiiiii ittt e e e s 44
5.7 Context AWareness FrameWOrK ..ouuive i i i i it eiee e eaneeiae s 46
5.7.1C0oNteXt MANAGEL vt 46
o A 0] 1 =) .= 47
oI C 1 O LU= g == 48
5.7.4CoNnteXt-Sensitive ACHIONS ..viiiiii i e s 48
5.7.5Data Acquisition Component......ccviiiiiiiiiiiiii e 49
5. 7. B S UDS I PEIONS. .ttt e 49
5.7.7Plausibility ChecCKingccoiiiiiiiiii e 50
IR 1 D=1 = T 2= o To] o of [e [P 50
5.8 Access Control Policy Frameworkc.oiiiiiiiii e 51

Version 1.0 Page 4 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

5.8.1Policy Enforcement PoiNt.. 51
5.8.2P0licy DeCiSioN POINT....cuiiriiii i i aeaaeeneas 52
5.8.3Policy Administration PoOiNtc.ooiiiiiiiiiii 52
5.8.4Policy Information PoiNt......cooiiiiiiiiiii 53

5.9 Quality of SErvice Manager ...oiiiiiii i e e e e e e 53
5.9, 1FUNCHIONAlITIES vviiei i e 54

IS I B 1< o =] o Ve [T o [of =T 54
5.9.3USEA DY ittt e 54

IR N ¥ o =T =T L] ol = 54
5.9, 5INStallation . v e 54
5.10 EXECULION iN @CIIPSE . it e e 59
o O U= o T 60
5.11 Storage ArChiteCtUre ..o 62
5.11.1 Implementation detailsccocoiiiiiiiiiiiiii 63
5.11.2 Storage Manager DaVICE ...uviiiiiiiiii i i i nnee e 64

o I G R Y = PR PPPPPIN 65

o I 2 1= o | P 66
5.11.5 Command Line ClieNt.....ccoviiiiiiiie i sne e nnsnnennsaneanennens 67
5.11.6 File System DeVICES....iiiiiiiiiiiiii i aeae s 67

o I O L\ = PR PPRPIN 67
5.11.8 File System DeviCe LyPeS ..iiiiiiiiiiiiiic 69

6. Device Development Kit.....cocoiiiiiiiiiiisiesresre s re v v s sre s sra s sna s snassnannns 71
6.1 DDK Components and TOOIScuiiuiiiiiiiiiii it as s s aaaens 71
0 1 0 oo PP 71
6.1.10btaining and Installing Limboccocoiiiiiiiiiiiii e 71
6.1.2Describing the service in @ WSDL file...coiiiiiiiiiiii e 72
6.1.3Describing the service-related statemachine..........ccooooiiiiinn, 74
6.1.4Run the Limbo compiler on the WSDL file.......ccoooviiiiiiiiiiieee 75
6.1.5Implement and deploy the device-specific servicecccevviiiiiiiinnnn. 75
6.1.6Running the Generated Code.......cooiiiiiiiiiiiii e 76

6.2 DEVICE ONEOIOgY « ittt et 76
ST B B TV ol /T | o] 77

S TC T =Y 2 = ol T PP 80
6.3.1System Requirements and Installation...........cccooiiiiiiiiiiiiicc i 80
6.3.2DeSigN TiMeE USAQE ..uuiiiiiiii e s s e s s s e s e e rnennneenes 80
6.3.3The auXiliary Page....ccuiieiiiiii e 81
6.3, 4T e M. it e 81
6.3.5The declarations ...uoiiiii i e 81
6.3 6FIamMENCO/ S ettt i i s 82

6.4 Device DiSCOVErY ManNager ..uuuiiuiieiiiiiiiiiiiii ittt sassassassassaaaassassanens 88
6.5 Hydra-Enabling @ DeVICE ...ciiviiiiiiiiiiiiie st sttt s e s e e nenneanens 89
7. Integrated Development Environment — Java......ccocvcrimirimierimsesinsnsnnnses 95
7.1 Network Manager IDE ...t e s 95
/2% W B 1 = ol] 1= ot o o) o 95
7.1.2Remote CONNECEION. .. ittt i r e s s e e aanneeans 95
7.1.3Hydra Status and Configuration VIEWSccooviiiiiiiiie, 97

7.2 Trust Manager IDE ... c.oiiiiiiiii i s 100
7.3 Crypto Manager IDE. .. .ottt i aaeran e s e aaneans 103
7.4 Context Manager IDEocuiiiiiiii 105
7.4.1Context SpecifiCationsuiiiiiii i 105

2 X ©o] g} =) O T8 =T o = PP 112

7.5 Obligation Framework IDE ... e 113
7.5.10Dbligation GUI ... e 113

7.6 Access Control Policy Framework IDE......ccciiiiiiiiiii i 116
7.7 Device Application Catalogue IDEccccviiiiiiiiii e 121
7.8 Installing Limbo in IDE ...t ee s 123

Version 1.0 Page 5 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

8. Integrated Development Environment - .Net........ccocvcmicimire v nennnnns 128
8.1 Creating a Basic Hydra Application......c.coviiiiiiiiii s 128
8.2 Creating a Hydra application from a template.......cccooviiiiiiiiiiiiiiniie, 128

8.2.1Initiating the Network Manager........ccoiiiiiii e 129
8.2.2Initiating the Application Device Manager.......c.cooiiiiiiiiiiiie i 129
8.2.3Working with devices. ... 130
8.2.4 Applications BiNdiNgS.....ciiiiiiiiiii i e 131
8.3 Creating an Advanced Hydra Application........c.cooiiiiiiiiiiiiiiiceaens 132
8.3.11Initiate AppPliCationcviir i 132
8.3.2Searching and finding for deviCes......civiiiiiiiiiiii i 133
8.3.3INVOKING DEVICE SEIVICES .ttt it i i e e e ae s aaeaaaeas 135
8.4 Understanding the Hydra Device XML....cciiiiiiiiiiiiiiiiciccici e 135
8.4.1Extending the Hydra Device XML....icoiiiiiiiiiii i 138
8.5 SDK COMPONENES 1.ttt ittt e e e s e e s e s s s s aanannans 138
8.5.1Application Project Templates.......c.coviiiiiiiiiiiiiii e 139
8.5.2HydraBasicApplication ... e 139
8.5.3HydraEnergy Applicationcciiiiiiii e 139
8.5.4HydraDynamiCApPlication......ccoviiiii i 139
8.5.5HydraSensorApplication ...t e 139
8.6 TOOIS INtEGrationoviiiiiiiii e 140
8.6.1The DAC DIOWS O « sttt ittt ettt tat e et raeraresan e saresarerareaareaaneaaneans 140
8.6.2The Device Ontology broWSEr ...cicviiiiiiii i e 140
8.7 SDK Class library for .NETcouiiiiiiii et e e e e e aeens 141
8.7.1Using the .Net DDK t0O0IS ...iiviiiiiiiiiii i 141
8.7.2Using Intel Service Author for UPnP Technologies..........cccovvviiiiinnnns 141
8.7.3Using Hydra .Net DDK 0Oloiviiiiiiiiiii i 144

1> T 1] 53T g 0 1= 1 o)/ 151

10.References and further Readingccccvmimirimsi i i i s s s s snnsnannnsns 152

I o o T2 T o 155

Version 1.0 Page 6 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:

Hydra Architecture (layer model) ...ooiiriiii e 11
Flowchart for the device classification proCess.cccviiiiiiiiiiiiiiiii e 12
Run Configuration (Hydra Bundles)cvieiiiiiiiiiii i e e 17
Eclipse Run Configuration (Arguments).....oiviiiiiiiiiiii i ae e 18
Network Manager Status page in BrOWSErcciiiiiiiii i e 19
Hydra Status Page .oiiiiiii i e 20
List Of SErviCeS (IN DIrOWSEI) ..ottt ria e aae e nae s 20
Hydra Status page sCreenshot ..ot e 23
Introduction of a property at the XML file of a declarative serviceccccevennnne. 27
Querying the Hydra network for a HID matching some attributes....................... 30
DAC Browser (upper right) in the IDEcciiiiiii e e 31
The HYdra BrOWSE .. ettt s e s e st s e st s e s s s s s n s e s s s aanaanans 32
Retrieving discovery information from the physical device........ccooiiiiiiiiinn. 33
Discovery information from a Bluetooth Device......civiiiiiiiiiiiiiiiii e 34
Resolving a physical device into a Hydra Device.covvviiiiiiiii i 35
Resolve information is sent as an XML structure to the Discovery Manager.......... 35

Figure 17: A physical device with unknown functionality has been transformed into Basic Phone
Device with services for reading/sending SMS. 36
Figure 18: Sending an SMS through the Basic Phone Deviceccciiiiiiiiiiiiiiiiiicii e, 36
Figure 19: Using the DAC browser to retrieve a WSDL description for the device. 37
Figure 20: A WSDL (Web Service Description Language) for the device........cccceviiiiiiiiinnnn. 38
Figure 21: 3-layered discovery architecture in Hydrac.cooiiiiiiiiiiiiii e 39
Figure 22: Ontology State Machine ConCEPLS . .uiiviiiiiiiii e 43
(S Te 1] = IPAC T ©] oY o] [oYe AV =T o 01T 1T 44
Figure 24- Event Manager INterface . .o i e 45
Figure 25: Event Manager Deployment. ..o 46
Figure 26: Subscriber NotifiCationciiiii i e e 46
Figure 27: SeleCt ProJeCt .. 55
Figure 28: ONtology BrOWSEE ..uuiiiiiiiiiiii ittt ae s e s e s e st st s e s e s e s e s e aansaaennenes 56
Figure 29: RepPOSItOrY Manag el . .iiiiii ittt it it i e it a e a e e et e e eantessaneesaaneesanneesannes 57
oW =IC 0 I B T T=1 o T = To PP 57
Figure 31: Hydra Status Pageccoiiiiiiiiiiii et eane e 58
Figure 32: Bundles for QOS Man@ger . ..uiiuiiii ittt et e et aa e eaaeeaae s 59
Figure 33: Basic architecture of storage in Hydra.......cooiiiiiiiii e 63
Figure 34: Some eXxamples fOr RESPONSESttt ettt eaeeeaae s 64
Figure 35: API of a Hydra Storage Manager DeVICEiiiiiiiiiiiii i e 65
Figure 36: API of HydraSMCONNECHOr vttt e e e e e e e eaneeaneenes 66
Figure 37: API of a Hydra File System DeviCe......uiiiiiiiii i e e 69
Figure 38: Basic architecture of file System.....c.oieiiiiii 70
Figure 39: Dummy state mMachine......cciiiiiii e e 74
Figure 40: The Device Browser tab.cooviiiiiiiiii e e ae e 77
Figure 41: Adding @ NEW INStANCE. . ittt et e e e e e eaaeaneanees 77
Figure 42: Device editing functionalityc.cvieiiiiii e 78
e8] 3G T ©F =\ o To = PP 81
T[0T SR S o =Yg g =T o ol PP 82
FIGUre 45: DEVICE PrOtEgE@ ...ouiuieieiiiiiitet ettt ettt e et e et e e et e n e e e e e a e e e eenanennes 84
Figure 46: DeVvice RUIES Protgeccciuiiiiiiiiiiii i e e ettt e e e e e e aaaanas 85
Figure 47: Flamenco Planning Layer. ..o st st st s e s e s e sn s saneanennees 87
Figure 48: Create Visual Projectcciiiiiiiiii i e e e s e s e s e s s e e nnees 89
Figure 49: Visual Studio — editing file.....c.ciiiiii e 90
Figure 50: Visual Studio (WebSerVICES) ..uuuiiiieiiiiiiiii sttt saae e anees 91
Figure 51: BUild @appliCation ...uiueiiiiiiii i e e 93
Figure 52: Adding breakpOinto 94
Figure 53: Hydra Middleware Connection configuration page........cccoviiiiiiiiiiiiiiiiiic e 96
Figure 54: Remote connection BULLON ..ot e neenees 96
Version 1.0 Page 7 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:

Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:

Network manager Status VIEWS ...uiiii i e eaae e 98
Event Manager StatUsS VIiEW ..o r e s e e ernerneeaneenes 99
Hydra Configuralor ViEW ..o s i e e e e nae e 100
TrustManager GUI showing the details of a X509v3 certificatec.covviviinnnns 101
Adding a new trust root to using the TrustManager GUILccocoviiiiiiiiiininnns 102
Validating a certificate using the TrustManager GUI (Trust Manager IDE) 102
(1Yo 1w 0]\ =T F= T T gV 1< PP 104
Certificate generation Wizardoooieiii i 105
Create Context Specification Wizardccoiiiiiiiiiiiiiii e 106
Context Definition Page ..vvvii i e 107
Data SubSCription Page .. it e 108
Context Rules - IMPOrts and TYPES .iivuiiiiiiiiiiiii i eeeee s 109
Context RUIEs - FUNCEIONS ...iuiiiiiiiii it e s e e e aenneas 110
Context Rules - RUIES LHS ... oot e e e e e r e e e n e nnennens 110
Publish Event to Event Manager Wizardccciiiiiiiiiiiiii i aae s 111
(O])= @ LU =T o 1= PP 113

The Obligation GUI perspective. EventListener view on the left, message console on

the bottom and event editor in the middle. ..o 114
Situation editor (empty list of policies on the right) ..o 116
The Policy IDE Dashboardc.ciiiiiiiiiiiii i aaea s 117
Creating @ NEW POliCY .ot e 118
Content Assist for selecting Rule Combining Algorithm........c.coiiiiiiiiiiiienn. 119
Content Assist selecting Data Ty e .. e 119
Content Assist in adding new root Policy XACML Elements.......c.covvviiiiiiiiiiniinnnns 120
XACML policy with an invalid attribute value ..., 120
XACML Schema Validation reporting @rrors.....ccvviiiiiiiiii i e 121
Device Application Catalogue VIEWoiviiiiiiiiii e 122
DAC configuration preferenCe Page ...oiviviiiiiiii i e e e e aaeas 123
Limbo wizard selection in EClipSe....ccviiiiiiii e 123
Limbo wizard starting pointoeoieiii e 124
Limbo Wizard OptionS . ..o s 125
Limbo wizard, selecting oUtpuUt ... 125
Limbo wizard, output dir€Ctory ...oovveiiii e 126
Template view in Visual STUdIO ..vviviieiii e nenaennes 128
Auto generated files for Basic Hydra Application.........coooviiiiiiiiiiiieaes 129
Creating WS clients for devViCe ..o e 131
Energy Application Template VIEW ..o e 133
Selecting web references t0 deviCes ..o 134
DAC Browser (upper right) in the IDEciiiiiiiii i 140
The web-based DeViCe BrOWS eI . ..uuuiiriiriiriire i it ranrareansaneaneaneaneanes 141
Producing SCPD WINAOW......uuieiiiiiiiiieeaesesesesesesesaesaesssaesansansansansansaneanss 142
ACTION BaD o e 143
ACTION IO . it e 143
SaVE fil@ WINAOW ..o e e e e 144
Add NEW deVICE WINAOW ..uiieiieiitiieiiteie i e se e s e sesaesarsaesansanaaneaneaneaneanens 144
Window for setting name and other properties.......ccoooviiiiiiiiiiiiiii s 145

Figure 99:

Figure 100:
Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:

Adding SErVICE WINAOW ...uuiiiiiiiiiiise ettt e e e e e s e e aneaneaneanenes 145
Choosing a file IN @XPIOrer ... e e eees 146
1001 =Y=T VAol I T o Ta [0 1 PP 146
Generating a Hydra device dialogue.........ooiiiiiiiiii e 147
Code Generation WINAOWeieiiiiii et e e e e e e e eneaens 147
Hydra (NEE-IDE ...t 148
L 1 = TR = 0 149
DAC with example SmartPhone deviceccviiiiiiiiiiiii e 150

Version 1.0 Page 8 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

1. Executive summary

This deliverable D12.9, titled - Final External Developers Workshops Training Materials, is intended
to serve external solution and device developers as well as application integrators who wish to
examine how to use, set up and configure Hydra components and how these components can be
integrated to form the Hydra middleware platform plus the benefits that they could offer for solving
specific design and requirement challenges.

D12.9 is a sequel deliverable to D12.8 and brings together the high level architectural and sub-
system level descriptions from D12.8 with the lower level implementation, functionality and how-to-
configure details as used to build applications based on the Hydra Middleware Platform.

The task of developing internal and external training materials has been an ongoing process during
the Hydra project. Internal training material has been in use by the Partners and people who are
interested in the technical aspects of the project. Training materials have been subjected to periodic
updates as informed by the feedback from the training sessions conducted to-date as well as
revisions and new additions that have been added as they have become available throughout the
course of the project. In particular the technical details regarding architectural and implementation
issues have been updated continuously to reflect the latest developments and improvements as
following the iterative cycles of design refinement and re-engineering as the project has evolved.

During the current phase the design and implementation decisions have been finalised and the
technologies used within Hydra are now consolidated into what will be delivered as the final version
of Hydra Platform at the end of the project. Within its three sections; namely Hydra Technologies,
Hydra Components, and Hydra Tools, this document covers the following five areas:

i) How-to use underlying technologies used for the realisation of the components of the
Hydra Platform

ii) A Hydra system setup description on how to establish a Hydra environment
iii) A description of Hydra components and their configuration and usage

iv) A description of the various tools (SDK, DDK and IDE) used in Hydra and how they are
used to develop Hydra applications and a Hydra-enabled environment

V) General concepts and technologies specifically related to Hydra.

Version 1.0 Page 9 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

21

2.2

Introduction

Purpose, context and scope of this deliverable

This deliverable D12.9, titled - Final External Developers Workshops Training Materials, brings
together a collection of descriptions, tutorials and how-to-dos, to teach on using the Hydra
Middleware. It is aimed at a target audience of external developers, and as such is at a sufficiently
technical level, describing the interfaces of each Hydra component, and how to use them.

D12.9 is the final update to D12.5 featuring all the latest and most advanced features of the Hydra
middleware from the perspective of a third-party developer. The target audience is thus application
and device developers.

Background

Following on from the Executive Summary and Introduction, an overview of the Hydra Research and
Development and Technology Development (RTD) Objectives is given in Chapter 3, including an
overview of the Hydra concepts and architecture highlighting the main design principles of the
middleware.

Chapter 4 presents the explanation of installation and prerequisites for setting up the Hydra
middleware.

Chapter 5 sets out a detailed description of how to configure the different SDK components of Hydra
and how the enabling technologies have been used thus adding value for the whole middleware
platform.

Chapter 6 explains the DDK and the set up of Hydra tools and concepts and how they can be
deployed when using Hydra to develop applications.

Chapter 7 is an intensive chapter focussed primarily on Java IDEs for the various components in the
Hydra middleware.

Chapter 8 focuses exclusively on .NET IDE development and configuration.
Chapter 9 presents summarises the document and provides the conclusions.

Further reading suggestions and useful sources are given in the reference section in Chapter 10
whereas Chapter 11 provides a glossary with relevant Hydra terminology.

Version 1.0 Page 10 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Hydra Architecture

The software architecture described is an abstract representation of the software part of the Hydra
middleware. The architecture is a partitioning scheme, describing components and their interaction
with each other. Figure 1 gives a structural overview of the Hydra middleware and explains how the
elements are logically grouped together. “Hydra Managers” constitute the major building blocks that
make up the Hydra middleware. A Hydra manager encapsulates a set of operations and data that
realise a specific functionality.

Hydra Application

Context Self* QoS
Manager Manager Manager
Data Acquisition Component |
Ontology Evant Storage
Manager Manager Manager

[Orchestration Manager] E‘

.

(Application Device] [Application Servica] g%
=

Mangsger hanager

-

w " .) Dervicze Desice
o] Ianager
(i
&
=
1]
o] =
o fn - _BTPraey _ _
(=] L | ===
=
o
B
(3] &
| ¥

g -y,

Physical Communication Layer

Figure 1: Hydra Architecture (layer model)

The Hydra middleware managers are enclosed by the physical communication layer and the
application layer shown at the bottom and at the top of the diagram respectively. The physical layer
realizes several network connection technologies such as ZigBee, Bluetooth or WLAN. The
application layer contains user applications which could comprise modules such as workflow
management, user interface, custom logic and configuration details. These two layers are not part of
the Hydra middleware.

The Hydra middleware offers a large collection of reusable core software components to
experienced developers. Based on these software components, programming abstractions allow for
programming with well-known concepts from the field of pervasive and ambient computing by
means of reducing the details of the underlying implementation. From the bottom to the top of
Figure 1 the Hydra middleware provides more and more programming abstraction and functionality
for the developers:

Version 1.0 Page 11 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

The Network Manager implements Web Service over JXTA as the Peer-to-Peer model for

device-to-device communication.

The Device and Device Service Manager in a bundle implement a service interface for a
physical device, handle several service requests and manage the responses.
The Application Device and Application Service Manager provide programming interfaces

and information for the different devices to the software developers.

The Discovery Manager automates and facilitates the discovery of devices in a Hydra

network.

The Ontology Manager is used by the Application Device Manager to get meta-information
about devices and also semantically resolves what type of device has been discovered.

The Event Manager provides a topic based publish-subscribe service in Hydra.

The Crypto, Trust and Policy Manager takes care of cryptographic operations, the evaluation
of trust in different tokens and the enforcement of access control security policies.

The Data Acquisition Component retrieves the data delivered by the sensors (via push or

pull mode).

The Quality-of-Service (QoS) Manager in Hydra is a component that accesses and
particularly processes all non-functional properties-data for services/components, devices,

and networks.

The Self* Manager provides support for automating application management.
The Context Manager allows for the definition of an application-dependent context model.

The Hydra Storage Architecture realises the persistent storage of
middleware.

3.1 Device Classification

information in Hydra

The Hydra middleware is designed to handle all types of devices, with varying capabilities. The
figure below, demonstrates how devices are classified into different categories, based on what
technologies they can support, which determines how the device can become "Hydra-enabled" (see
glossary in chapter 11 for terms used in Hydra).

|ihl: W el ne}

Zan It host the

YES
middizwan?

Dwoess. It hawe IF Does It have IF

suppeort vBS suppeort
WO
L 1=} Caun we embesd &
WET
KO TES
1 b

(b0 £D1?}|<—_EIE_E{D:1}

Version 1.0

Figure 2: Flowchart for the device classification process.

Page 12 of 157

D1 devices?

t contme| D0

30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

3.2

3.3

3.4

The significance of the D0--D4 categories is that devices within each category are handled in the
same way in relation to the Hydra middleware and the enabling process. For further details on
Hydra terminologies please refer to the Glossary section in Chapter 8.

Category-DO devices are used with a proxy, that is, they can only be reached through a proxy-
service residing on a Category-D4 device. The proxy service must implement the communication
with the DO device.

Category-D1 devices can host a web service, and the intention is that such embedded web
services are created with the Limbo tool (see chapter 6.1.1)

Category-D2--D4 devices are said to be Hydra enabled. Hydra enabled devices host the network
manager and all other managers needed for that device, but differ in their networking capabilities.

Applications and Devices

Hydra applications are built by programming networked ambient intelligent devices. Devices are
made programmable by the Hydra middleware by means of proxies as well as by embedded
components. Whatever the method, it is transparent to the application developers, as they access all
devices based on a pure service and event based programming model. The API of this programming
model is manifested by the Hydra SDK, for application development.

Applications

An application in Hydra is built around a DAC (a Device Application Catalogue) which functions as a
kind of device registry, holding references to the set of devices which has been discovered and are
available to the application.

Hydra provides different levels of configuration, depending on the application requirements. A
minimal configuration for a Hydra application consists of an Application Device Manager, and a
Network Manager running on a Hydra gateway device (aka D4 device), to which one or more other
devices are connected or can be connected.

The minimal configuration can be extended by an Ontology Manager, which will add semantic
discovery capability to the system. Additional functionality for context management and security can
be obtained by the corresponding managers (Context Manager, see 5.7, Security Manager, see
5.2.6, 5.8, 7.2).

Hydra Devices
A basic idea in Hydra is to differentiate between the physical devices and the application view of the

device, in terms of so called Hydra Devices.

A Hydra Device is the software representation of a physical device. This representation is either
implemented by a proxy running on a gateway device, or, by embedded Hydra managers on the
actual device. A Hydra Device is said to Hydra-enable a physical device.

The Hydra MDA run-time includes a Device Service Generator which creates the service interfaces
for discovered devices. Each Hydra device will thus get a web service as well as a UPnP service
interface.

There are five categories of Web Services generated for a Hydra Device,

e A Generic Hydra web service, exposing metadata and management functions common to all
Hydra Devices.

e An Energy web service, providing a set of functions for the monitoring and control of energy
consumption of devices.

Version 1.0 Page 13 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

3.5

3.6

3.7

e A Memory Service which allows logging and storing of device internal data such as state
variables and energy consumption data.

e A Location Service which can be used to query the device about its location and position.

e A device type specific web service, exposing the device type specific functions
Semantic Devices

Based on Hydra Devices, the SDK provides the concept of a Semantic Device as an application
development construct. This allows a programmer to develop new application specific adaptations of
the available Hydra Devices.

The services offered by the Hydra devices have been designed independently from the particular
applications in which the device might be used, e.g., a lamp might offer “on/off” and “dimming” as
two services while a pump might offer “increase flow” and “get water temperature” as two services.
A semantic device on the other hand represents what the particular application would like to have.
We call these logical aggregates of devices and their services for Semantic Devices.

A semantic device instantiates itself dynamically on-the-fly, when appropriate physical devices are
discovered. A simple example is a programmer that creates a semantic device, “intelligent meat
thermometer” based on two physical devices — meat thermometer and a DLNA-enabled TV. The
semantic device takes sensor data from the meat thermometer and uses the display capabilities of
the DLNA-enabled TV. The programmer expresses some behaviour rules, what should happen when
the thermometer reaches certain temperatures. His cool new device will then allow a user to put a
steak into the oven and then go watch TV. When the meat temperature reaches 54 degrees the user
is alerted with a picture of red meat that is shown on the TV, at 58 degrees a medium cooked steak
is shown and at 60 degrees we see a well-done steak. The programmer could also add some
monitoring rules, to check if the temperature is raising to fast etc and in that case advice the user to
turn down the oven temperature. The TV could be delivered with a whole catalogue of semantic
devices which regularly check the network to instantiate themselves. If the user then buys a
thermometer and brings it home he is informed that this can be used together with the TV and
asked if he wants to install this facility. Since semantic devices are Hydra Devices themselves they
can then be recursively combined, and also be discovered by other Hydra DAC.

Hydra Apps

Hydra Apps are ICT services that users can buy or subscribe to in order to solve specific needs in
both private and professional settings, such as vital signs monitoring, energy optimisation, smart
home control and more. The Semantic Device construct is a basis for delivering such “Apps” on the
Hydra platform. Thus, a Hydra App is a semantic device which has been tailored for some
application specific purpose, by a Hydra developer. In principle a Hydra App can be seen as a
semantic device designed for a specific purpose and with a user/client interface.

Application Templates
In order to facilitate automation of developments work, the Hydra SDK includes different types of
templates. Among these are a number of application templates,

- Template for a Basic Application: most generic type of application, minimal.

- Template for a Energy Application: monitoring and control of a set of homogeneous
devices in a local network.

- Template for a Dynamic Application: a generic application using devices of a certain
class at run-time, i.e., not bound to specific devices types by design time.

- Template for a Sensor Application: a generic event-based application

The templates are integrated in the host IDE. The following sections describe the principal use of
these templates (see 7)

Version 1.0 Page 14 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

3.8 The SDK and the DDK

Whereas the SDK is focused on the development of applications of devices, the purpose of the DDK
is to adapt various physical devices for use by the Hydra developers. The DDK is described in
Chapter 6. Many elements of the Hydra platform are of course common to both the SDK and the
DDK. Among them are the Device Application Catalogue (DAC) and the Ontology Manager. The SDK
and the DDK are integrated to form the Hydra IDE.

Version 1.0 Page 15 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

4. Installing the Hydra Middleware

This chapter discusses the requirements for installation of the Hydra Middleware, using the Equinox
(Eclipse) implementation of OSGi. The Hydra Middleware will be provided as a stand-alone package
which can be run in any generic OSGi framework, not only depending on the eclipse IDE. (Please

see chapter 10 for add

4.1 Prerequisites

itional information and URLs)

Some bundles are not provided with Eclipse (Galileo - 3.5 and earlier), and so will need to be
downloaded and placed in the p/ugins folder of your Eclipse installation, if the Hydra Middleware is

to be launched from w

ithin the Eclipse environment, which is not compulsory.

Most significantly this may include

org.eclipse.equinox.cm 1.0.100.v20090520-1800
org.eclipse.equinox.ds_1.1.1.R35x v20090806

4.2 Required Bundles

The following chapters specify the various OSGi bundles required to launch the Hydra Middleware.
This includes both core bundles, and the bundles of Hydra Managers and components. The
configuration provided here is a very basic one, and extra Hydra bundles can be added to include

their functionality.

4.2,1 Core required bundles

These external bundles have to be added in the run configuration:

javax.servl
javax.xml 1
org.apache.
org.apache.
org.apache.
org.apache.
org.apache.
org.apache.
org.apache.

org.eclipse

org.eclipse.
org.eclipse.
org.eclipse.
org.eclipse.
org.eclipse.

org.eclipse.

org.mortbay

org.mortbay

Version 1.0

et 2.5.0.v200806031605
.3.4.v200902170245

commons.codec 1.3.0.v20080530-1600
commons.httpclient 3.1.0.v20080605-1935
commons.lang 2.3.0.v200803061910
commons.logging 1.0.4.v200904062259
log4j 1.2.13.v200903072027

xalan 2.7.1.v200905122109

xml.serializer 2.7.1.v200902170519
.equinox.cm 1.0.100.v20090520-1800
equinox.ds 1.1.1.R35x v20090806
equinox.http.jetty 2.0.0.v20090520-1800
equinox.http.servlet 1.0.200.v20090520-1800
equinox.util 1.0.100.v20090520-1800
osgi.services 3.2.0.v20090520-1800

osgi 3.5.1.R35x v20090827

.jetty.server 6.1.15.v200905151201
.Jetty.util 6.1.15.v200905182336

Page 16 of 157

30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

4.2.2 Hydra bundles

4.3

These Hydra bundles have to be added in the run configuration (see chapter 10 for download links):

CryptoManager 1.1.0
HydraManagerConfigurator 1.0.0.qualifier
HydraMiddlewareAPI 1.0.0.qualifier
HydraMiddlewareClients 1.0.0.qualifier
HydraWSProvider 1.0.0.qualifier

Network Manager Bundle 1.7.0.qualifier

& Run Configurations @

Create, manage, and run configurations —
Create a configuration to lsunch the OSGI Framework. ! ;;
- -,
TEX| B -

Mame! | ContextManagerBundle

type Filter text —
<I Bundles 6= Arguments | [2-| Settings % Tracing EEnwronment = Common

= E Generic Server -~
5 oM anws

= E izeneric Server(External Launch)
E Mew_configuration (2)

Framework: |Equinox s Default Start level: | 4 — Default Auto-Start: (brue »

type Filker text

=-f HTTF Preview Bundles Start Level AL
[Mew_configuration (3) =
[%= com.ibm.stools,emf.event (3.0,0,v20060915_
E Java Applat [J %= com.ibm. ieu (3.8.1,v20080530)
=IL1] Java Application %= com jeraft. jsch (0.1,37.%200803061811)
L] CreatkLFiie []%= javanc.activation (1,1.0,+200806101325)
£Z] HydraTestAppication [% jarvac.mail (1.4.0,v200604091 730)
Ju Junit 1% javax.servlet (2.4,0,v200806031604) oo oAl
J Junit Plugin Test %= javax.serviet. jsp (2.0.0,v200806031607)
#-m2 Maven Build)% jarvancvsdl (1.4,0,v200806030407)
= 06 Framework 1% javax.wsdl (1,5.1,+200806030408)
& CertTool oMb s ol £4 % A+ e 2AAGAE ADAAARS * | [l only show selected bundies
4 CantextManager MM ki * |1 qut of 595 selected

Include optional dependencies when computing required bundles
Add new workspace bundles to this launch configuration automatically

@ NetworkManager 2009 [Jvalidate bundles autamatically prior ta launching Validate Bundles

\ﬁ: Task Context Plug-in Test
Juy Task Cantext Test

Filter matched 29 of 35 items

@ Run
Figure 3: Run Configuration (Hydra Bundles)

These bundles provide the basic functionality of the Network Manager with the CryptoManager.
Other bundles must be added as required.

Crypto Manager Setup

The Crypto Manager (see chapters 5.2.6 and 7.3 for details) requires some initial modification of the
default Java distribution, in order to provide the functionalities it requires.

How to register the global crypto provider:
1. In order to use the bouncycastle keystore and cryptographic keys longer than 128bit, the "JCE

unlimited strength policy files" needs to be wupdated. Copy /local policy.jar and
US export_policy.jar to $JAVA_HOME/jre/lib/security (overwriting existing files).

(The following step should be optional. You should try it if you get a "KeystoreException: no match")

2. In order to make the bouncycastle crypto provider available for the whole OSGi framework, it
needs to be installed as a global java security provider

a. Copy lib/bcprov-jdk14-138.jarto $IJAVA_HOME/jre/ext

Version 1.0 Page 17 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

b. In $JAVA_HOME/jre/lib/security/java.security, add bouncycastle to the available

crypto providers':

security.provider.5=org.bouncycastle.jce.provider. BouncyCastleProvider

4.4 VM Arguments

-Declipse.ignoreApp=true -Dosgi.noShutdown=true -Dorg.osgi.service.http.port=8082

& Run Configurations @

Create, manage, and run configurations

Create a configuration to launch the OSGi framework.

TEX | B3

= E Generic Server
B cmamews
= E Generic Server(External Launch)
E New_configuration {2}
= E HTTP Preview
Mew_configuration {3}
B 126E Preview
[Java Applet
=131 Java Application
[T creatxmLFile
[T HydraTestapplication
Ju Junie
\ﬂ’f Junit Plug-in Test
m2 Maven Build
=& 05GI Framework
& CertTool
":B ContextManager MM
’Z‘B ContextManager 035G
P ContextManagerBundle
@ ContextManager0SGi2009
’35 NetworkManager 2009
.ﬁj Task Context Plug-in Test
Juj Task Conbext Test

Filter matched 29 of 35 items

(6]

Mame: | MetworkManager 2009

=45 Bundles | €)= Arguments 57| Settings @ Tracing E Environment | =] Commaon
Program arguments:

-05 ${target.os} -ws ${target. ws} -arch ${target.arch} -nl ${target.nl} -console

YM arguments:
-Declipse.ignoreApp=true -Dosgi.noShukdown=true -Dorg.osgi.service, http. port=8082
-Dhttp.nonProxyHosts=localhost

Wworking directory:

(%) Default:

O Gther:

Figure 4: Eclipse Run Configuration (Arguments)

4.5 Running the framework

When the Hydra framework is started and 'ss' type in to see the list of installed plugins. It should
look like this (id numbers may be different, but the order of the bundles in which they start is vital):

Framework is launched.

(o}

State

ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE

R ©O© o Jo b WN O K-

=

Bundle

org.eclipse.osgi 3.5.1.R35x v20090827
CryptoManager 1.1.0

org.apache.log4j 1.2.13.v200903072027
javax.servlet 2.5.0.v200806031605
org.eclipse.equinox.util 1.0.100.v20090520-1800
org.apache.xml.serializer 2.7.1.v200902170519
org.eclipse.equinox.http.jetty 2.0.0.v20090520-1800
org.mortbay.jetty.server 6.1.15.v200905151201
HydraMiddlewareAPI 1.0.0.qualifier
org.eclipse.equinox.ds 1.1.1.R35x v20090806

! Don't set bouncycastle as the first provider. This is a known bug and won't work.

Version 1.0

Page 18 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

12 ACTIVE HydraManagerConfigurator 1.0.0.qualifier

14 ACTIVE org.eclipse.osgi.services 3.2.0.v20090520-1800

15 ACTIVE org.eclipse.equinox.cm 1.0.100.v20090520-1800

16 ACTIVE HydraWSProvider 1.0.0.qualifier

17 ACTIVE javax.xml 1.3.4.v200902170245

18 ACTIVE org.mortbay.jetty.util 6.1.15.v200905182336

19 ACTIVE org.apache.commons.lang 2.3.0.v200803061910

21 ACTIVE org.apache.xalan 2.7.1.v200905122109

22 ACTIVE Network Manager Bundle 1.7.0.qualifier

23 ACTIVE org.apache.commons.logging 1.0.4.v200904062259

24 ACTIVE org.eclipse.equinox.http.servlet 1.0.200.v20090520-1800

25 ACTIVE org.apache.commons.httpclient 3.1.0.v20080605-1935

26 ACTIVE HydraMiddlewareClients 1.0.0.qualifier

27 ACTIVE org.apache.commons.codec 1.3.0.v20080530-1600

Useful URLs

Goto: http://localhost:8082/NetworkManagerStatus

It should show something like this
U | [EC ln--I"l--—'lEI»-JILn-1<--100=m~=19==-1“--1‘1-rr11—-—1xm-1*l--I'I-n-l'--lmﬂ-—‘lw
I N N N —rva——— - arch wih Geagle B & -
Status page for the local Network Manager

HYDRA
Total Number of HIDs in the Hydra Network: 342
T -
Figure 5: Network Manager Status page in browser
Goto: http://localhost:8082/HydraStatus
It should show something like this
Version 1.0 Page 19 of 157 30/04/2010

http://localhost:8082/NetworkManagerStatus
http://localhost:8082/HydraStatus

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Hydra Configurator Network Manager Status Event Manager Status
Available Configurations No configuration selected yet

com.eu.hydra.security.core
com.eu.hydra.network

Figure 6: Hydra Status page

Goto: http://localhost:8082/axis/services

It should show something like this

Figure 7: List of services (in browser)

Version 1.0 Page 20 of 157 30/04/2010

http://localhost:8082/axis/services

Hydra D12.9 - Final External Developers Workshops Teaching Materials
5. Software Development Kit
This chapter provides an introduction to the Software Development Kit (SDK) in Hydra, detailing the
software interfaces (Web Services etc) of each Hydra component / manager / tool, and tutorials on
how to use them.
5.1 Hydra Commons
The Hydra Commons set of bundles provides the main point of interaction between the developer
and the SDK. The commons bundles include:
e Middleware API
e Clients
e Configurator
These bundles make life a lot easier for the developer to use the managers and components of the
Hydra Middleware, as well as for the creation of applications.
5.1.1 Hydra Middleware API
The Hydra Middleware API bundle contains the Hydra API, that is, all external interfaces of the
Hydra managers and the types used in them. In that way, there is one common bundle containing
all relevant Hydra interfaces, separating them from their implementation, which is necessary for a
well-structured integrated middleware. This also includes the classes for the various types that act
as parameters for calls to middleware components, as well as a set of utilities to aid with usage.
Use of the Middleware API for particular components is discussed in the sections relevant to each
component. Typically, this also involves the Hydra Middleware Clients bundle, as described in the
following section.
5.1.2 Hydra Middleware Clients

The Hydra Middleware Clients bundle contains all the Web Service clients for calling the various
managers and components of the Hydra Middleware. These clients include the generated AXIS files
for the creation of Web Service Clients, providing the services as defined in the Hydra Middleware
API. The middleware clients are located in bundles named as follows:

Using the Event Manager as an example, the developer can generate the Event Manager client in
one of two ways. Firstly, by using the generated Locator class for each client, as shown below:

EventManagerPortServicelocator locator =

new EventManagerPortServicelLocator () ;
locator.setEventManagerPortEndpointAddress (endpoint) ;
EventManagerPort em = locator.getEventManagerPort () ;
em.subscribe ("ExampleTopic", "0.0.0.235235154145");

Here, the locator is configured with an endpoint address. This is the address of the local SOAP
Tunnel (exposed by the Network Manager), specifying the from and to HIDs, as well as the
sessionID. An example endpoint is given below, with no sessionID (0).

http://localhost:8082/SOAPTunneling/0.0.0.341243145454252/0.0.0.4124344658
75/0/

The second method is to use the RemoteWSClientProvider OSGi service that allows retrieval of the
relevant manager objects without the need to create specific Web Service Locator objects. This
service offers a method, called getRemoteWSClient, which interface is:

Version 1.0 Page 21 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.1.3

public Object getRemoteWSClient (String className,
String endpoint, boolean coreSecurityConfig);

When calling the method, the interface class name of the Web Service, the endpoint to this Web
Service and a Boolean value indicating whether we want to call the service with Hydra security or
not must be provided.

The next lines show an example of calling a method of the Network Manager Web Service. The
developer first obtains a RemoteWSClientProvider element, and via this Web Service Client object
finally makes the call to the desired method of the Network Manager (in this case getHIDs).

RemoteWSClientProvider service = (RemoteWSClientProvider)
context.getService (context.getServiceReference
(RemoteWSClientProvider.class.getName ()));
NetworkManagerApplication nm = (NetworkManagerApplication)
service.getRemoteWSClient (NetworkManagerApplication.
class.getName (),

endpoint, true);

Vector v = nm.getHIDs () ;

Hydra Configurator

In order to achieve high level of integration between the set of managers that conforms the Hydra
Middleware, a common configuration system for all Hydra managers and applications has been
implemented.

This common configuration system is based on the use of the configuration admin OSGi service. This
service provides a way to dynamically update the configurations, avoiding having to restart the
managers in order to update them. It also provides persistency for the configurations.

Thus, an OSGi bundle which provides a common interface for the configuration of all Hydra
managers has been implemented. The bundle is called the Hydra Manager Configurator. Adapting
the configuration of a particular manager is achieved using the Configurator class provided by the
Hydra API. The Configurator class is a class that implements the ManagedService interface, so that it
can receive configurations from the configuration admin OSGi service. The Configurator class
provides the methods and attributes for managing the configuration of the manager which
instantiates it, and a way for communicating with the configuration admin service in order to apply
into this service all changes introduced by the user at the Configurator class, registering itself as a
managed service.

The Hydra Manager Configurator bundle provides a set of interfaces that makes it possible to modify
the configuration of the different Hydra managers previously adapted to the new common
configuration system. This bundle provides three interfaces for configuring Hydra managers:

e A web application called Hydra Status
e A Web Service deployed by the Hydra Manager Configurator
e An OSGi console command, currently working on Equinox

The Hydra Status page (Figure 8) is a web application that provides a web interface for configuring
the different local Hydra managers adapted to the new common configuration system, based on the
configuration admin OSGi service. It also provides all the information provided by the well-known
Network Manager Status page and Event Manager Status pages.

Regarding the Network Manager information included, the Hydra Status page provides information
about HIDs, hosts where they are deployed, descriptions and endpoints of all devices detected by

Version 1.0 Page 22 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

the local Network Manager, differentiating between local and remote HIDs (local and remote
Network Manager installations).

Regarding the Event Manager, the Hydra Status page provides information about the topics, the
endpoints and the dates of subscription of all the Hydra events the local Event Manager is
subscribed to.

Regarding the configuration of the managers, the Hydra Status page provides a graphical interface
for configuring all Hydra managers adapted to the new common configuration system in a dynamic
way. The available sets of configuration options are loaded dynamically if the manager which uses
them is running, identifying themselves by their configuration PID. Clicking over a configuration PID,
all its options and their values will be loaded, making it possible to modify them and update the
maodifications made by clicking the Update Configurations button.

Once you update the configuration, the new configuration will be working, without having to restart
the managers. However, if you put —clean parameter inside the program arguments of your OSGi
configuration all updated configurations will be reset to their initial state. The URL of the Hydra
Status page (a screenshot of the service can be seen in Figure 8) is
http://localhost:8082/HydraStatus, (given that the web server of the Hydra installation is running in
the 8082 port, which is the default port of the Hydra configuration). This functionality is also
replicated inside the IDE, as discussed in the relevant section(s).

Hydra

HYDRA

Hydra Configurator Network Manager Status Event Manasger Status
Available Configurations com.eu.hydra.network
com.eu.hydra.security.core
com.eu.hydra.eventmanager
Backbone.Factor: 3
com.eu.hydra.network
Backbone.HttpPort: 9700
Backbone.JXTALogs: OFF
Backbone.Mode: Node
Backbone.Multicast: ON
Backbone.PeerName: HydraNetworkManager

Backbone.PipeLifeTime: 600000

Backbone.Relayed: True

Update Configuration

All content copyright © 2009 Hydra project, all rights reserved.

Figure 8: Hydra Status page screenshot

Another configuration tool provided is the Web Service, which is deployed by the Hydra Manager
Configurator bundle, and that provides the following methods:

e getAvailableConfigurations(): list the available set of configurations.

o deleteConfiguration(String configuration_pid): delete a concrete configuration from the
common configuration system.

Version 1.0 Page 23 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

e listConfiguration(String configuration_pid): list the options provided by a concrete
configuration and their current values.

e setConfiguration(String configuration_pid, String option_key, String value): set the value
of a concrete option for a concrete configuration.

Finally, and regarding the configuration tools using Equinox OSGi console, the configure command is
used, which provides similar options as the ones provided by the Web Service above. These options
are the:

e configure —I: list the available set of configurations.

e configure —d <configuration_pid>: delete a concrete configuration from the common
configuration system.

e configure <configuration_pid>: list the options provided by a concrete configuration and
their current values, e.g. configuration com.eu.hydra.network will print current
configuration of the Network Manager.

e configure <configuration_pid> <option_key> <option_value>: set the value of a
concrete option for a concrete configuration.

5.2 Network Manager

The network model complements the runtime platform model regarding the details of the network.
In Hydra the underlying network is complex and therefore, it needs to be described in a separate
(but related) network model. The purpose of the network model is to define what types of network
connections will be supported and if there are constraints that have to be adhered to during
implementation and network design.

5.2.1 Hydra Definition of Device To Device Communication

The Network Manager is the incoming and outgoing point of information in the middleware.
Therefore, the main purpose of Device to Device communication will be managing the
communication between Network Managers. This means that only Hydra-enabled-devices will be
involved in this kind of communication.

Devices inside Hydra need to communicate in order to exchange information. Each device offers
different resources inside the Hydra network mechanisms which need to be implemented so making
possible the discovery of new resources in Hydra-enabled devices inside the network. Moreover, in
order to consume these resources, Hydra devices need the means to establish communication
between each other. The following sections will present those aspects.

5.2.1.1 Addressing

From the middleware point of view, an addressing method based on Hydra Identifiers (HID) has
been defined for Hydra, instead of the usual IP-based one. The Identity Manager is responsible for
the management of these HIDs. Its main functionality is providing a unique context-dependant
identifier for every device (physical or semantic), resource or service, called HID. It is also
responsible for the maintenance of the idTable, a data structure dedicated to store the matching
between logical and physical identifiers.

However, this addressing method is useless if there is not a way to propagate this information to
other Hydra-enabled devices involved in the Hydra Network. The Backbone Manager is responsible
for spreading this information between the different Hydra-enabled devices in the network. Thus,
every Identity Manager belonging to the Hydra Network keeps an idTable internally and an updated
list of every HID in the network. This process is known as Network Manager Discovery.

The Hydra middleware will be running in dynamical environments, where new resources are
susceptible to constantly appear or disappear. In order to detect new resources inside the Hydra
network, we need a discovery mechanism.

Version 1.0 Page 24 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Inside the Hydra network, devices and resources are identified through a Hydra ID (HID), which
varies depending on the context. In order to contact them, one Hydra-enabled device needs to
contact the Network Manager of the Hydra-enabled device they belong to. The discovery of Network
Managers will be done through use of Device to Device communication.

Through Device To Device communication, we aim to propose an innovative way to discover
Network Managers (and thus, Hydra-enabled devices) and also to know more about their features
and the services they provided, in a scalable Wide Area Network. This means that the scope of the
Hydra network will not be restricted to a Local Area Network.

5.2.1.2 Communication

As mentioned before, the Network Manager is the incoming and outgoing point for information in
the middleware. The Hydra network is an “all-IP” network. This means that only devices with IP
communication capabilities will be able to communicate directly (through device to device
communication) inside the Hydra network.

Moreover, the device to device communication will be restricted to the Hydra-enabled devices that
are able to host the Hydra middleware, which in Hydra terms means that this communication will be
“inside” Hydra. Thus, the device to device communication can be defined as the data exchange
between devices “inside” the Hydra network, which are Hydra enabled and have IP communication
capabilities.

5.2.2 The Peer-to-Peer Network Architecture

There exist multiple objectives regarding device to device communication. First, the Hydra
middleware needs to offer an efficient way to share resources among the Hydra Network, in a
scalable, distributed and efficient way. The Hydra middleware also needs to prevent system failures
when a node is not available. And finally, the Hydra Network needs to allow ubiquitous access to the
network.

All of these reasons have led us towards a Peer-to-Peer architecture. Several Peer-to-Peer models
have been analysed and according to the requirements identified for device to device
communication, JXTA P2P communication protocols have been selected as the most suitable
mechanism to carry on the communications “inside” Hydra. That is, the communication between
Network Managers.

The reasons that have led us to select JXTA are:

o Interoperability: Enables communication between peers independently of network
addressing and physical protocols.

¢ Platform independence: JXTA does not depend on the programming language, network
transport protocols and deployment platforms, giving freedom of choice. Java SE and Java
ME implementations have been selected for Hydra.

o Ubiquity: JXTA is designed to be deployed on any device, not just PCs.

e Security: for security means regarding authentication, authorisation, and integrity can be
implemented based on JXTA. Attacks on the level of the protocol cannot be addressed as
that would require changing the JXTA protocol.

e Community support: JXTA is supported by a wide community of developers and the different
specifications are fully documented.

¢ Wide range of services: Most of the P2P models studied have been designed exclusively for
providing file sharing services. Instead, in JXTA, thanks to its abstract architecture based
on six protocols, it is possible and feasible to create a wide range of interoperable services
and applications.

Version 1.0 Page 25 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.2.3 Purpose

The Network Manager is the bottom layer of the Hydra middleware deployed in Hydra Gateways and
in Hydra-enabled devices. It is the entry and exit point of information of the Hydra middleware.
There is only one Network Manager per device where the middleware is deployed.

The Network Manager provides a Web Service interface (which is the main interface of the Network
Manager), which is the information entry point for the middleware. Data transferred between Hydra-
enabled devices and gateways should always pass through the Network Manager.

5.2.4 Main Functionalities

The Network Manager is responsible for managing the communication between Hydra-enabled
devices. In order to do this, the Network Manager:

e Creates and overlay P2P network, where all the Hydra-enabled devices appear directly
interconnected, no matter if they are behind a NAT (Network Address Translator) or
Firewall.

e Provides indirection architecture for addressing Web Services hosted by Hydra devices using
the HID addressing mechanism. Each service is identified in Hydra through an HID, which is
a global and unique identifier. The Network Manager provides interfaces for other
managers, applications and Hydra devices for HID creation, modification and deletion. It
also offers the possibility to select the transport protocol for the service invocation between
TCP, UDP and Bluetooth.

e Provides a transport mechanism over the overlay P2P network for invoking Web Services
hosted by Hydra devices (SOAP Tunnelling) using the HID addressing mechanism. The SOAP
messages addressed to an HID are routed by the Network Manager through the overlay
network to the Network Manager hosting the service. Therefore, using the SOAP Tunnelling
and the Network Manager any device or application is able to transparently publish and
consume services anywhere, anytime, breaking the network interconnectivity barriers and
independently of the service endpoint location.

e Provides a transport mechanism over the overlay P2P network for multimedia content
exchange between UPnP AV or DLNA devices.

e Provides session management mechanisms between HIDs during service invocations.

e Provides time reference synchronization between different Network Managers.

e Provides a status page for developers, which the developer can use for monitoring dynamic
information about the Hydra Network and the HIDs available.

Each Hydra-enabled device will run one and only one Network Manager. The Network Manager
maintains two complex data structures: the Hydra ID (HID) and the Session. The following sections
provide an overview on these two data structures.

5.2.5 Hydra Web Service Provider

First of all, in order to make the deployment of Web Services in the Hydra middleware easier, a new
OSGi bundle has been created to take the place of the obsolete Axis bundle that the managers were
using since the beginning of the project. This bundle is the Hydra WS Provider bundle. The main
goal of this component is to provide automatic deployment of Web Services and independence for
Hydra managers from Axis.

Now it is possible to deploy Web Services, including the Hydra manager ones, in an automatic way,
without the use of a deployer class or WSDD files.

The Hydra WS Provider bundle is still based on the Axis bundle, but it has been adapted to the
Hydra middleware, providing transparent interfaces to the developers supporting all the
characteristics that the Hydra middleware needs.

The Hydra WS Provider bundle is composed of three packages, as seen in the Table 1:

Version 1.0 Page 26 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Package Definition

com.eu.hydra.security.axis Provides Core Hydra security to the
bundle.

com.eu.hydra.wsprovider.impl The main package, deals with the

detection of OSGi services and their
deployment as Web Services.
com.eu.hydra.wsprovider.servlet Deploys a servlet which represents the
Axis administration servlet.

Table 1: Hydra WS Provider package structure

The main class is the Activator class, which can be found under the com.eu.hydra.wsprovider.imp/
package. It deals with the detection of OSGi services and their deployment as Web Services through
a ServiceTracker object.

The services to be published as Web Services should have been deployed as an OSGi service. It is
also recommended but not mandatory to use OSGi Declarative Services. When a service is to be
published as a Web Service using the Hydra WS Provider, a set of properties need to be defined:

e SOAP.service.name. mandatory property, it defines the name of the service to be deployed.
The Hydra WS Provider deploys each service using this defined property. Once this property
is set, the service will be deployed with this name at http.//localhost:8082/axis/services.

e SOAP.service.methods: optional property, it provides a list of the names of the methods to
be implemented. When defined, the Hydra WS Provider deploys only the methods indicated.
Otherwise, the Hydra WS Provider deploys all the methods of the Web Service, i.e. all
methods that have an access level of ‘public’.

e Hydra.security.config. optional property, it defines whether the Web Service is to be
deployed with or without security. A Boolean value defines this property. All services will be
deployed with security by default.

In order to register and deploy a Web Service in the Hydra middleware, the developer must register
the service in the framework with the SOAP.service.name property indicating the name of the
service. Programmatically, and in the case of non declarative services, a service is registered as
follows:

Hashtable props = new Hashtable();
props.put ("SOAP.service.name", "EventManagerPort");
context.registerService (EventManager.class.getName (), this, props);

By using OSGi declarative services, the services are already registered via the framework, but the
properties have to be set in the OSGI-INF/component.xm/ file (at least the mandatory
SOAP. service.name property), as shown in the Figure 9.

=l Overview

Component Options
Specify the component’s name, class and method signatures: Specify the component's options:

Name: EventManager [-Yale)

Class*: com.eu.hydra.eventmanager.impl.EventMa Service's Pruperties I i

Activate:

Mame*: | EOAP.service.name
Type: String ?

EventManagerPort

Deactivate

Modified

= Values:
Properties (1)

Specify the component's properties:

ESOAP.service,name |:Add File...

|Edd Property..

|: Edir...

Cancel) € OK) |: Remaove
| =

Overview | Services | Source

Figure 9: Introduction of a property at the XML file of a declarative service

Version 1.0 Page 27 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.2.6 Crypto HIDs

From the Lessons Learned of the third iteration, we realized that the service addressing mechanisms
implemented in Hydra, the HIDs, lack of high security features. The HIDs are identifiers that allow
developers and applications to identify each entity evolving in a Hydra network. It was designed to
identify each service in a given situation (context) but also to dismiss the real identity of the device
offering the service.

The main problem with current implementation of HIDs is that the information related to their
description is being exchanged over the network without any encryption between the Network
Managers. Thus an attacker of the Hydra middleware would be able to identify the identity of HIDs
and the service provided by the owner of the HID by just sniffing the network traffic. Another
problem identified with HIDs, is that the description field associated with them is not enough to
unambiguously identify a service, as it is just a String with no fixed format. These problems are not
very important for building applications that do not have high security requirements, but when
moving to domains that require these high levels of security, such as e-Health, the problems
become important.

In order to solve these issues, we have extended the HID concept incorporating new security
features like certificate linking, HID description through attributes and HID data encryption. These
new secure Hydra Identifiers are called Crypto HIDs. The main features incorporated to Crypto HIDs
are:

5.2.6.1 Certificate linking

Each HID, when it is created, it is associated with a certificate, generated using the Crypto Manager.
This certificate is used to encrypt and decrypt all the information sent to and from this HID.
Therefore, before sending any information to an HID, the Network Managers perform a certificate
exchange process for encrypting the information that is going to be exchanged. This certificate
exchange is performed using the Secure Session Protocol, with which certificates will be distributed
using a public key exchange protocol.

5.2.6.2HID attributes

In order to unambiguously identify a HID in the Hydra Network, we have extended the description
of HIDs to attributes. Each HID is created with some attributes, which are securely stored in its
certificate. The number of attributes is not fixed, and it is up to the developer to decide which
attributes to use. Some examples for attributes would be:

+ PID (Persistent Identifier): An identifier for the device providing a service (for example,
MAC address of the device)

« SID (Service Identifier): An identifier for the service provided. It could also be a semantic
identifier of the service provided.

« UserID (User Identifier): Identifier for the owner of the device providing a service.

These attributes, and any others, are provided during HID generation following the Java Properties
class XML schema. An example of attributes for an HID would be:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM
"http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="PID">03-43-F3-23-24</entry>
<entry key="SID">ThermometerService</entry>
<entry key="UserID">Peter</entry>
</properties>

Version 1.0 Page 28 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

The attributes are not exchanged between Network Managers during the HID exchange process,
that is, Network Managers have all the HIDs in the Hydra Network but do not have the information
at to what each HID stands for. In order to provide developers and applications the means to know
these attributes, we have implemented two mechanisms to retrieve the attributes for a specific HID
and to query the network searching for an HID matching some attributes. These two mechanisms
have been designed taking security into account:

= Retrieving attributes for an HID: Using this mechanism, developers and applications
are able to retrieve the attributes of a specific HID. As mentioned above, attributes
for a HID are stored securely into the certificate linked to it. Therefore, in order to
retrieve the attributes for a HID, the Network Manager starts the Secure Domain
Protocol, exchanging the certificates of the interested parties. Therefore, nobody
without a valid Hydra certificate is able to retrieve the attributes for a HID.

* Querying the Hydra network of a HID matching some attributes: This is the situation
when an application wants to address a specific HID, with some fixed attributes, but
without knowing beforehand which is the HID assigned to it. Imagine an application
that wants to retrieve the temperature from a specific thermometer. It first needs to
know the HID of that thermometer in order to be able to invoke its service.

The process is simple: a query is generated and sent to all the Network Managers in the network
using a multicast channel (step 1 in Figure 10). In the query, the requester has to provide its
credentials, this is, its HID and attributes. Each Network Manager receives the query and searches in
the local idTable (step 2 in Figure 10) (the table where all the HIDs are stored). If a Network
Manager finds a HID that matches the query (step 3 in Figure 10), before answering to the sender,
checks with the Policy Manager if there is any policy applied for that HID and provides the sender
information (step 4 in Figure 10). The Policy Manager answers the Network Manager as to whether
it is allowed or not to send that information to the requester (step 5 in Figure 10). Whether or not it
is allowed, a query response containing the HID is sent to the sender over a unicast channel (step 6
in Figure 10). If it is denied, no information is sent to the sender. Therefore, in every step of this
process, security is ensured. This process is illustrated in the Figure below.

Version 1.0 Page 29 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

@ ALLOWED

@ Check(HIDx HIDy) f@

lookUp(atributes)

Policy Manager
Network Manage:\

uery(HIDx,attributes) HIDy

@ idTable
Query(HIDx,attributes)

Query Entity Network Manager
(HIDx)

V\@ lookUp{atributes)
Network Manager

Query{HIDx attrbutes)

idTable

\@ lockUp(atributes)

Network Manager

idTable
Figure 10: Querying the Hydra network for a HID matching some attributes

In order to provide the developers with the tools for using these new mechanisms, four new
methods have been added to the Network Manager API. The old methods for creating and
interacting with HID related information are still maintained, for backwards compatibility reasons,
but its usage is discouraged as they have been deprecated.

createCryptoHID

CryptoHIDResult ereateCryptoHID(java.lang.String xmlAttributes,
java.lang.String endpoint)
throws java.rmi.RemoteException

Operation to create an crypto HID providing the persistent attributes for this HID and the endpoint of the service behind it (for service invocation).
The crypto HID is the enhanced version of HIDs, that allow to store persistent information on them (through certificates) and doesn't propagate the
information stored on it. In order to exchange the stored information, the Session Domain Protocol is used. It returns a certificate reference that point
to the certificate generated. The next time the HID needs to be created, using the same attributes, the certificate reference can be used.

Parameters:

xmlAttributes - The attributes (persistent) associated with this HID. This attributes are stored inside the certificate and follow the Java
Properties Xml schema.
endpoint - The endpoint of the service (if there is a service behind).
Returns:
A com.eu.hydra.network.ws.CrypyoEIDResult containing string representation of the HID and the certificate reference (UUID)
Throws:

java.rmi.RemoteException

Version 1.0 Page 30 of 157 30/04/2010

Hydra D12.9 - Final External Developers Worksho

ps Teaching Materials

createCryptoHIDfromReference

java.lang.String createCryptoHIDfromReference(java.lang.String certRef,
java.lang.5tring endpoint)
throws java.rmi.RemoteException

Operation to create an crypto HID providing a certificate reference (from a previously created cryptoHID) and an endpoint The crypto HID is the

enhanced version of HIDs, that allow to store persistent information on them (through certificates) and

Parameters:
certRef - The certificate reference from a previously generated cryptoHID.
endpoint - The endpoint of the service (if there is a service behind).
Returns:
The string representation of the HID.
Throws:

java.rmi.RemoteException

5.3 Device Application Catalogue

5.3.1 The DAC browser

The DAC Browser is now also an integral component of SDK as part of the IDE as seen in Figure 11

— = N
V) Test - Microzoht Visual Studio - Experimental Hive To), [t
o a i PR . - — - 1
| Fle Edt View Project Build Debug Data Tools Test Window Help
S-S @ b Debug = Any CPU £} AR i Pl 3 fom R
| i i 3 a8
| Program.cs_ StartPage | ~ x| Hydra Explorer vax
Al F- o 8 Hydra Local Netwark
|l @57 v 4 -
& — i = W8 UN-Foan2C1Can?
continue A e ApplicationDeviceManager
8 *pactioocontinue e ApplicationServiceManager
»
= - (c: -7}, BaseRddresses)) 8 Fuglesang
4 e ApplicationDeviceManager
tr
(we FuglesangLight
aBe amb; e CNets Thermometer
if ((smb = serviceMost.Description.Behaviora.Find< ()) == nuil X
i ~a ApplicationSes anager
aCa (1] aw Printers
tEnabled = true; < Train
t.Description,Behaviors,Add (smb)
—
), c e Kalfebryggare
he oo ¢ wa CNets Wind Meter
v CNets Air Pressure
e FuglessngFan
v CNets Rain Senser
0 =
g Soition txpl.. (3 Ch 2| 21 Hydra Ex
;2.Default.EventManager: i 1 i Eplorer
Propertie TR
itExample”, addreas):
u[at
| \
l I
|
| 2 \
Pending Checking ~ i x
LAl (E
2 Comments | 1) - 2] | ™ 10|
Name Change type
Ready

Figure 11: DAC Browser (upper right) in the IDE
It provides the same functions as the stand-alone version and in addition,
- Provide an IDE-view of all devices known to the Hydra Network

- Enables the developer to create proxies by selecting devices

Version 1.0 Page 31 of 157

30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.3.2 The Graphical Browser

A fundamental part in every Hydra-based application is the Device Application Catalogue (), which is
managed by the Application Device Manager, as was explained in previous chapters. This is a
runtime component that keeps track of and manages all devices that are currently active within an
application. The Hydra Device Application Catalogue serves all Hydra middleware managers with the
information and metadata they need regarding devices, their services, and their status.

Hydra uses the Hydra Device Ontology and models for discovery to recognise new devices when
they enter into a Hydra network. Based on the discovery model it queries the Device Ontology to
deduce what type of device has entered the network. The Hydra can be queried by different
middleware managers to retrieve a service interface for different devices.

A Hydra browser has been developed to allow a user/developer to graphically browse the Hydra
network and inspect properties and services of devices. The browser tool also allows the user to
invoke the different services offered by devices.

.
- ==
File View Help
[l # Discovered Devices Name Value
=8 Hydra Devices Base LURL http://212 214 80 150:52876/
(o= BluetoothDiscoveryManager Device icon Mone
-3 Device Services Device URN
[#-#s unresclved device Emb.edll:led.dewces a
:) Expiration timeout 0
" unresolved device Friendly name unresolved device i
[unresolved device Has presentation True
e Interface to host 212.214.80.150
[+-+= DeviceControllerDiscoveryManager Manufactuner
[#] == RFSwitchDiscovenyManager Manufacturer URL
[#] == SenalPortDiscoveryManager Mode! description
[+ FigBeeliscoveryManager Model name
) Model number
""" %4 Non-Hydra Devices Presertation URL hitp://212.214.80.150:52876/ i
Product code i
Proprietary type
Remote endpoint 212 214.80.150:52876
Serial number
Services 1
Standard type
Unigue device name 44e02fbb-384d-437b-a04f-895041734 1ea
Version 0.0
|
L]
|
] T p

Figure 12: The Hydra Browser

Version 1.0

By manually invoking the different services, the actual role the Device Application Catalogue plays in
the Hydra middleware can be illustrated. As can be seen in Figure 12 above, 5 different Discovery
Managers are available in the network, each of them is dedicated to discover a certain type of
physical device (Bluetooth, RF Switches, ZigBee etc).

Page 32 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
Each Discovery Manager keeps track of the device it has discovered and tries to elicit as much
information as possible from the device. All this physical discovery information can be accessed by
calling the service “Get Device Physical Discovery”.

@ H ara DEVICE H I!L ATaon Catalog |= '._u;.p.'-l | El
File View Help
E---_njl Digcovered Devices Mame I Value
Elrf,l Hydra Devices Base URL http://212.214.80.150:52876/
E--‘-f.l.- Bluetooth DiscoveryManager DE"‘?CE icon MNone
- Device Services Device URN
[#]- == unresolved device Emt?ed.dedldewces 0
E, ved devi Expiration timeout 1]
" e LNresolved device Friendly name unresolved device
[+ unresolved device Has presentation True
[ae [FPET R bdedommtebost 212214.80.150
=3 Display Presentation Page
(¥ e Device Get Device Physical Discovery XML I
[H-ee RFSwit
(- SerialP Expand all devices
[} Zighee : hitp://212.214.80.150:52876/
_____ 8 Non-Hydra Collapse all devices P - 4ol 1
R etwork
sscan nerwer 212.214.80.150:52876
Seral number
Services 1
Standard type
Unigque device name 44e02bb-384d-437b-a04-85504175941ea
Version L
1 1| 1 [b
B B - ‘é
Figure 13: Retrieving discovery information from the physical device
This discovery information is returned as an XML document, which can be seen in the figure below:
Version 1.0 Page 33 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

r : |
"_’é C\Users\peterros.CNETMG\AppData\Local\Tempitmp38ES.xml - Internet Explorer erhallet fran Dell IEIElﬂ_hJ

.

|=| Ch\Users\peterros. CNETNG\AppDatatloca = | +4 ‘ X ‘ | Google e v

Arkiv Bedigera Visa Favoriter Verktyg Hjilp
GDEJEIC Gl» E\ir» (L) Instaliningar Narton 7 | |\. M G
% 4 (93] |@cws. [@owus. [@c. x| | B v B v @ v [sida v G Veriayg v

';jﬁ' Far att skydda datorn farhindrar Internet Explorer att den har webbsidan kar skript eller ActiveX-kontroller som x
skulle kunna fa tillgang till datern. Klicka hir om du vill se alternativ...

»

- <bluetoothdevice=
“name=Z600</name>
zmajordevicetype =Phone</majordevicetype:= i
<deviceclass=CellPhonePhone </deviceclass>

- <bluetoothservices>
- «bluetoothservice:>
<servicename =Dial-up Networking</servicename >
<servicelD=00000000-0000-0000-0000-000000000000<=/servicelD =
- «servicetypesz -
<servicetype =Dialup Networking </servicetype=
=servicetype =Generic Networking </servicetype=
</servicetypes>
<securityPolicy >3818301 </securityPolicy = I
</bluetoothservice:=
- <zbluetoothservice>
<servicename >Voice gateway </servicename >
<servicelD=00000000-0000-0000-0000-000000000000</servicelD>
- =servicetypes>
<servicetype Headset Audio Gateway </servicetype=
<servicetype =Generic Audio</servicetype:=
</servicetypes=
zsecurityPolicy>1028672852 </securityPolicy =
=/bluetoothservice=
- <bluetoothservice:
zsaervicename =Serial Port 1</servicename >
«<servicelD=00000000-0000-0000-0000-000000000000</servicelD =
- Zservicetypess

W /M Dator | Skyddat lige: Av H100% -

m

L]

Figure 14: Discovery information from a Bluetooth Device

In Figure 14 we can see that it is a Bluetooth Device that has been discovered, it has the Bluetooth
Major DeviceType “Phone” and Minor DeviceType “CellPhonePhone” (Major DeviceType and Minor
DeviceType are part of the Bluetooth standard.

The Bluetooth Discovery Manager has also managed to extract the different Bluetooth services
offered by the device. This discovery information can now be used to reason about what type of
device has been discovered. The physical discovery XML is given to the Device Ontology which
deducts that this device corresponds to a “Basic Phone” in the Hydra Device Ontology.

Version 1.0 Page 34 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

-

= Hydra Device Application Catalogue Browser

T

e

File

View Help

Elhﬂ Discovered Devices
- Hydra Devices

--'-o-r Basic Phone
I__;_I--'-a?r BluetoothDiscoveryManager
EID‘ Device Services

[State varables

----- ‘@ GetDiscoverylnfo()
----- ‘# GetBEmorMessage(
----- ‘@ GetHasEmon])

----- ‘i@ GetHydralDi)

----- @ GetStatus()

----- W GetWsDL)

----- ‘@ GetWSEndpoirt()

[+ unresolved device
[+ unresolved device
[+ unresolved device
[+ unresolved device

£
¥ RFSwitchDiscoveryManager
[SerialPortDiscoveryManager
¥4 ZigBeeDiscoveryManager

«|

T |

Elf} um:schemas-upnp-org hydraservic

----- ¢) ResolveDevice(string UDN. sf
----- ‘@ SetHydralDistring HydralD)
----- ‘@ SetStatus(string Status)

t- e DeviceControllerDiscoveryManager

Name

13

| Value

Action name
Retum argument
Argument 1
Argument 1 ASY
Argument 2
Argument 2 ASY

m

ResolveDevice

“naone>

(string) UDN
A_ARG_TYPE_ResolveDevice_LUDN
(string) resolvemessage

A_ARG_TYPE_ResolveDevice_resolvemessage

» 4 |

m

o

Figure 15: Resolving a physical device into a Hydra Device.

B

By invoking the service “Resolve Device” the Bluetooth Discovery Manager can be told that this is a
“Basic Phone”. The idea is of course to do this programmatically, but here it is done manually for

illustration purposes.

Version 1.0

r

=4 Hydra Execute - ResolveDevice

—

= | B ||

w

e BluetoothDiscoveryManager
[} urn;upnp-org.serviceld: 1
ResolveDevice

Hydra
Execute

g (string) UDN

~ = (string) resclvemessage

|44&D2fbb-384d-43?b-aﬂ4f—355041 T341ea

<basicphonedevice >mame >Z600</name:|
<deviceclass *Phone</deviceclass ><vend

Y

-

Imvocation complete (31.70@sec), waiting for next invocation arguments.

4

Figure 16: Resolve information is sent as an XML structure to the Discovery Manager

Page 35 of 157

30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
The Discovery Manager then creates and publishes the Device to the network as a “Basic Phone”
device. The Basic Phone device is now available together with the services offered by a Basic Phone
(in this case a set of SMS read/send functions).

e Hydra Device Application Catalogue Browser - Lug:' (=]
File View Help
El---n_j.l Discoversd Devices Name | Value
EI---p{,l Hydra Devices Action name FeadMessage
|_:_|_,. Basic Phone Retum argument ASY Mgssage
=-{3* Device Services Erzt”m Irtﬂfle E{'”Q) stat
7.)] I LI ring us
E} um.schemasupnp-org.bluetonths.emu:e.i Argument 1 ASV A_ARG. TYPE_ReadMe
E} um:schemas-upnp-ong:hydraservice:: 1 Argument 2 i2) Posttion
El[} um:schemas-upnp-ong smaservice:: 1 Argument 2 ASY Indes:
(- State variables
------ i GetMumberOf Messages()
------ i ReadlatestMessagel)
------ ") ReadMessage(string status, i2 Position)
------ @ SendSMSisting Message, string phoner
[+ BluetoothDiscoveryManager
-+ DeviceControllerDiscoveryManager
[e RFSwitchDiscoveryManager
[SeralPortDiscoveryManager
[LigBeeliscoveryManager
----- 5‘;! Mon-Hydra Devices
1| 1] [P 0 [b
g
Figure 17: A physical device with unknown functionality has been transformed into Basic Phone
Device with services for reading/sending SMS.
These services are now directly invokeable from the Browser, and for instance, an SMS can be sent.
1
= Hydra Execute - ReadlatestMessage @lﬂlﬁ |
e Basic Phone Hvd
UPnP . i ol - ydra
\';) [} urn:upnp-org:serviceld:smsservice: 1 Execute
FReadlatestMessage
<5bg® (string) Message <SMSMessages<From>+46705619458</ .
From>«<Date>2008-03-31
18:22:16«</Date=«Status=Unread </ Status
=<Message>When can | buy Hyda?
</Message </ 5MS5Message>
Invocation complete (28.294sec), waiting for nesd invocation arguments. A
Figure 18: Sending an SMS through the Basic Phone Device
Version 1.0 Page 36 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Finally the Browser can be used to retrieve a service description for a web service that allows us to
access the device programmatically:
% Hydra Device Application Catalogue Browser @M

File View Help
(=l Discovered Devices Mame | Value
L—__|-¢! Hydra Devices Base URL http://212 214 80.150:55132/
& - E Ricnicon— None
Get Device Physical Discovery XML um:schemas-upnp-org hydradevice basicphone:B
1]
Get Device XML (SCPD) " 1800
Get Device WSDL Basic Phone
i False
Remove Device 212.214.80.150
CNet
Expand all devices AL http /A .cnet se
. n Basic Phone
Collapse all devices ZE00
L >
[#]-+=ee BluetoothDi Rescan network L
[~ DeviceContronerorseoverymarager T VT T
[RFSwitchDiscoveryManager Propristary type
[e Serial Port DiscoveryManager Remate endpoirt 212214 80.150:55132
[+ FigBeeDiscoveryManager Seral number
-8 Non-Hydra Devices Services 3
¥ Hyd Standard type
Unique device name 849%ba3d5-e89-47b5-8al7-bf 8o 14af SdiD
Version 1.0
4 1 LS | 1 3
A

Figure 19: Using the DAC browser to retrieve a WSDL description for the device.

Version 1.0 Page 37 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

— E ; -
& http://212.214.80.150:8080/BasicPhoneWS ?wsdl - Internet Explarer erhallet fran Dell (| El i
s, ; - : I
(e] hitp:/212.21480.150:8080 BasicPhoneWSwsdl v |4] A.Hesog:s P -
Arkiv - Redigera Visa Favoriter Verktyg Hjalp
Google [Gl+]sok) @ » Omstsiningsr Nortom viwim @ - &~
o Bl . ' »
Wk ‘88 =[] Networ... | Present.. |§éhttp:... | ‘ L= B - 0 v bSida v () Verktyg v

wsu:Id="WSHttpBinding_IHydraBasicPhoneWSService_ReadMessage_Input_policy"> »

<wsp:Policy
wsu:Id="WSHttpBinding_IHydraBasicPhoneWSService_ReadMessage_output_policy'

<wsp:Policy
wsu:1d="WSHttpBinding_IHydraBasicPhoneWSService_ReadlatestMessage_Input_p«

<wsp:Policy 1
wsu:1d="WSHttpBinding_IHydraBasicPhoneWSService_ReadlatestMessage_output_j~

<wsdl: types

<wsdl:message name="IHydraBasicPhoneWS5Service_SendSMS_InputMessage'>
<wsdl:part name="parameters" element="tns:SendSMS" /=

<f/wsdl:message>

<wsdl:message name="IHydraBasicPhoneWSService_SendSMS_OutputMessage"=
<wsdl:part name="parameters" element="tns:SendSMSResponse" />

<f/wsdl:message>

<wsdl:message
name="IHydraBasicPhoneWSService_GetNumberOfMessages_InputMessage'>
<wsdl:part name="parameters" element="tns:GetNumberOfMessages" />

<fwsdl:message>

<wadl:message
name="IHydraBasicPhoneWSService_GetNumberOfMessages_OutputMessage">
<wsdl:part name="parameters"

element="tns:GetNumberOfMessagesResponse" />

<f/wsdl:message>

<wsdl:message
name="IHydraBasicPhoneWSService_ReadMessage_InputMessage'>

<wsdl:part name="parameters" element="tns:ReadMessage" /> i
] §

L@ @ Internet | Skyddat lige: P3 H100% ~

Figure 20: A WSDL (Web Service Description Language) for the device

5.4 Discovery Manager (Framework)

Hydra implements a 3-layered discovery architecture — physical, network and semantic discovery,
see Figure given below.

In short the 3-layered discovery architecture works this way: First physical devices are discovered
using native discovery protocols such as Bluetooth. Then the Hydra Middleware (Discovery Manager)
creates a software wrapper that allows further extraction of metadata from the device and makes it
available in a Hydra network. Finally the device ontology is used to fully resolve what type of device
and what kind of functions it has and how the service interface looks like.

Version 1.0

Page 38 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Developers semantic devices

Exterral appicions

Sarmaniic Device Laper
B3 E3

Manages many device
access protocols

- Bluetooth
- RF Network discovery R UPnP Wrappers

- ZigBee
- RFID L 4 BT S CA N SCOVETY
- WiFi
- Serialports

Figure 21: 3-layered discovery architecture in Hydra

— Hydra Network

SEMantc diSCoOVETY.

5.4.1 Physical Discovery

At the lowest level the Hydra project is developing techniques for the discovery at the physical level.
This will allow us to discover devices using communication protocols like Bluetooth, ZigBee, WiFi etc.
Each of these protocols is handled by a specific Discovery Manager.

The Discovery Manager is part of the implementation (a sub-manager) of the Application Device
Manager. This (sub-) manager also implements the base class for all protocol specific discovery
managers in Hydra. A discovery manager keeps track of the devices it has discovered. As long as
the devices are unresolved they are treated as Embedded devices of the Discovery Manager. A
discovery manager runs locally on a gateway/PC where it looks for remote devices such as Bluetooth
devices.

The following discovery managers exist with interfaces available:

« Bluetooth Discovery Manager
« SerialPort Discovery Manager
* RFSwitch Discovery Manager
¢ ZigBee Discovery Manager

e UPnP Discovery Manager

¢ RFID Discovery Manager

» External Discovery Manager

The External Discovery Manager now supports discovery of devices over the P2P architecture.
Network discovery based on UPnP
Once a device has been discovered at the physical level it needs to be discovered at a network level.

This is done by creating a UPnP (Universal Plug and Play) wrapper to represent the device on the
network. The UPnP wrapper then allows the device to be discovered at a network layer.

Version 1.0 Page 39 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.4.2

The UPnP (Universal Plug and Play) architecture offers pervasive peer-to-peer network connectivity
of PCs, intelligent appliances and wireless devices. The UPnP architecture is a distributed, open
networking architecture that uses TCP/IP and HTTP. It enables seamless proximity networking in
addition to data transfer between networked devices at home, in the office and everywhere in
between.

It enables data communication between any two devices under the command of any control device
in the network. UPnP has a nhumber of characteristics:

« Media and device independence. UPnP technology can run on any medium including
phone lines, power lines, Ethernet, IR (IrDA), RF (WiFi, Bluetooth), and FireWire. No device
drivers are used; common protocols are used instead.

« Common base protocols. Base protocol sets (Device Control Protocols, DCP) are used, on
a per device basis.

- Operating system and programming language independence. Any operating system and
any programming language can be used to build UPnP products. UPnP does not specify or
constrain the design of an API for applications running on control points. OS vendors may
create APIs that suit their customer's needs. UPnP enables vendor control over device UI
and interaction using the browser as well as conventional application programmatic control.
- Internet-based technologies. UPnP technology is built upon IP, TCP, UDP, HTTP, SOAP
and XML, among others.

« Programmatic control. UPnP architecture also enables conventional application
programmatic control.

- Extensibility. Each UPnP product can have value-added services layered on top of the
basic device architecture by the individual manufacturers.

The UPnP architecture supports zero-configuration, invisible networking and automatic discovery for
a breadth of device categories from a wide range of vendors. Devices can dynamically join a
network, obtain IP addresses, announce their names, convey their capabilities upon request, and
learn about the presence and capabilities of other devices. DHCP and DNS servers are optional. A
device can leave a network smoothly and automatically without leaving any unwanted state
information behind.

External Discovery

External discovery enables Hydra gateways to locally represent all Hydra devices in the Hydra
network even if they reside in a different physical network. This enables the developer to build
applications that use devices in exactly the same way independently of their network location.

The basis for the external discovery process is synchronisation of information in-between the
Application Device Managers in the network. For each of the found external Hydra devices a local
device proxy is created using the SCPD of the external device. This will also copy all of the Hydra
UPnP properties for the device such as the HIDs for the different device services.

The external discovery follows the following procedure:

1. Contact Network Manager to find all Device Application Managers in the network

2. Contact each of the Application Device Managers to retrieve a list of their local devices

3. Contact each device and use the generic Hydra Web Service to retrieve the device XML
(SCPD)

4. For each device create a local device proxy using the device XML.

Version 1.0 Page 40 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

5.4.3 Semantic Discovery

Once the device is discovered as part of the network, it needs to be discovered semantically, i.e.,
the device needs to be related to the Hydra Device Ontology so that it is known what kind of device
has been discovered.

Hydra uses two different XML structures to describe a device and its capabilities. First there is the
device description, which contains various metadata regarding the device such as its type, the
manufacturer, model etc. An example of a device description is shown below:

<device>
<deviceType>urn:schemas-upnp-org:device:waterPump:1</deviceType>
<friendlyName>GrundfosPump</friendlyName>
<manufacturer>Grundfos</manufacturer>
<manufacturerURL>http://www.grundfos.com</manufacturerURL>
<modelDescription>Pump</modelDescription>

<modelName>Grundfos Magna</modelName>
<modelNumber>X1</modelNumber>
<UDN>uuid:dac824ab-bcal-4d5¢c-93c5-578a0c697bal</UDN>
<serviceList>

<service>

<serviceType>urn:schemas-upnporg:
service:grundfosPumpService:1</serviceType>
<serviceId>urn:upnp-org:serviceld:grundfosPumpService</serviceld>
<SCPDURL> grundfosPumpService scpd.xml</SCPDURL>

<controlURL> grundfosPumpService control</controlURL>
<eventSubURL> grundfosPumpService event</eventSubURL>

</service>

</serviceList>

</device>

Secondly, there is the SCPD (Service Control Point Description), which describes the capabilities of
the device and how to invoke its different services. An example of service description is shown
below:

<?xml version="1.0" encoding="utf-8"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
<specVersion>

<major>1l</major>

<minor>0</minor>

</specVersion>

<actionList>

<action>

<name>GetStatus</name>

<argumentList>

<argument>

<name>ResultStatus</name>
<direction>out</direction>
<relatedStateVariable>Status</relatedStateVariable>
</argument>

</argumentList>

</action>

<action>

<name>SetTarget</name>

<argumentList>

<argument>

<name>newTargetValue</name>
<direction>in</direction>
<relatedStateVariable>Target</relatedStateVariable>
</argument>

</argumentList>

</action>

</actionList>

<serviceStateTable>

<stateVariable sendEvents="yes">
<name>Status</name>
<dataType>boolean</dataType>
</stateVariable>

<stateVariable sendEvents="no">
<name>Target</name>
<dataType>boolean</dataType>
</stateVariable>

Version 1.0 Page 41 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

</serviceStateTable>
</scpd>

A final part of the semantic discovery is the service discovery task to find a suitable service provided
by specific device (or device type) in accordance to defined requirements. In the context of Hydra,
the service discovery task defined this way can be used in various cases, for example:

« From a developer user point of view: to find the required service provided by a
specific device in the process of development of basic communication patterns, such
as composed (or orchestrated) services, choreography interfaces or service user
interfaces.

« From a system or application point of view: to find the required service provided by
specific device when executing the complex process requiring the service
orchestration.

« Tools and matchmakers exist supporting the service discovery for both OWL-S and
WSMO standards (description of this tools is out of scope of this deliverable), which
may be used for particular approach.

In Hydra support for SAWSDL annotations is provided. As the SAWSDL approach does not explicitly
support service discovery, there are two basic possibilities, which can be used in this case:

« The Service discovery process is realised by searching the SAWSDL according to
provided semantic annotations.

« Using the annotations in SAWSDL file, the model of service is annotated in the Hydra
service ontology and the discovery process is realised by matching the ontology
concepts in accordance to specified requirements, similarly as in OWL-S/WSMO
approach.

5.5 Ontology Manager

This section focuses on the creation of StateMachine ontology, which is used for the creation of
state machine stubs to handle device run time status changes, and also for the diagnosis and
monitoring rules used for achieving self* properties.

The StateMachine machine ontology is modelling the state machine concept in UML2. The concepts
in StateMachine ontology is shown in the following figure:

Version 1.0 Page 42 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

:Composite s::}—«.: Region)

Simple)
J =8 Final)
| State | = ; =
s : :;\,_;&_ B SynchState) (split)
Vd y X2 \\'_»_ e A o
>4 | Guard) \ /
//) & \ * < / T —
A s [Initial) /(| Branch)
/ - : e \,.. — —___,-v‘ Ao
P X o A Action) o &,J// .
= -~ = -~
d_»StateMachinePart:_-, = (_Pseudostate »}——— History |
— — e —
R Event) i VeS8 —
\\ s — N ¥ .
NN \\ [Join |
\. Y .
N (Transition)
N RASTY e
) (Junction)

(" stateMachine) -

Figure 22: Ontology State Machine Concepts

How to create a state machine instance is described below. Taking the simple Thermometer device
as an example, the following steps are involved to add this state machine instance.

1. Add all the states (starting, measuring, stopping) to the "Simple" concept, which means that the
Thermometer state machine has these simple states. The adding of instances to an ontology is
achieved with the "Individuals" tab, by clicking on the concept (for example "Simple"), and then
click on the button "create instance" button. This is shown in the following figure. Protege is
used as the OWL development environment. As every state for all devices need to be
differentiated, each state is named according to its device, for example,
"pico_th03_indoor_measuring". Set the "isCurrent" property to indicate whether this state is a
current state or not, and add give it a label.

Version 1.0 Page 43 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
[StateMachine Protege 3 bet
ﬁ»e EM Poet OM Ressoong Code Ioos Wndow Hep
IDEE 4+ BE Mma PeE ap -'Q:protégé J©-
Omnwm) OM.Classes | W Properties | @ ndividuals | = Forms oV
l rectperS StateMachine For C \ Smple For Individual: 4 PcoTHD3 Indoor_measuring (instance of Simple) @.
SRS Asserted [[Inferred | BICR SP] o
owtThing Assaried Waton ‘ - e e x8| Property Vae Lang 8z
v Sirdensclwd‘m @ detecting 1 rdfs:comment 1=
Acoon, @ FlowMeterteauring News
Z‘:’:ﬂ ¢ @ FlowMeterStarting
=2 @ FlowMeterStopping
@ e
> :;’::’“5'9 @ itiiizing -
el 4 PicoTHO3_indoce_measurin o e P R goActiviy LA XS
1 "’e“““ff“? 4@ PlcoTHO3_indoor [ie P
o @ PicoTHO3_indoor _stopping ihcel
@ Sycnsie | PicoTHO3_Outdoor_measuring Libel P R ey see
j:‘:;";:"‘e * PROTHES Ouoo St [nessing. -
@ PicoTHO3_Outdoor_stopping
:;:;11* Stateame PR $eoe
getTemperaturelndoor (instance of Action) =@ g
For Individual: 4 |getTemperatureindoor (instance of Action)
K Y
i v .
sctionRasuTimestand dh 32 GmeStampResut 44 K mtoricaResult p R
December 1,2007 213 [os }{40 oo | [pecember 2, 2007 2109 [oe 120 [foo 320/ foat -
Labe PR timeStampResult3 q° X nistoricalResub x
etTenperature Decenber 2, 2007 243 [os }{30 Hfoo 338 foat ~
HiL) b : ricaResul P R)
. 2103 [oe }{10 oo 303 float | 349 foat - s
Simple b % €
] ® @ =
TE
Figure 23: Ontology Browser
2. Add the "doActivity" associated with a state by clicking on the button 'create new resource'
followed the "doActivity" property. For the measuring state, this is the "'getTemperatureIlndoor'
activity, which is used to model the indoor temperature measuring. An instance of data (not
mandatory) is shown in the above figure.
3. Add the transition instances to "Transition" concept in the ontology, in the same way as in Step 1,
with the meaningful name for example "T_measureToStop". Chose the source state and target state
of the transition by clicking the "Select existing resource", choose the state that has just been
created to reflect the transition direction.
4. This simple state machine is ready now. For this simple case, there is no need to have instances
of "Guard", "PseudoState", etc.
Please see chapter 10 and use the online resources for further information.
5.6 Event Manager

The Hydra Event Manager provides publish/subscribe functionality, i.e., the ability for publishers to
send a notification to multiple subscribers while being decoupled from them (in terms of, e.g., not
holding direct references to subscribers). The specific variant of publish/subscribe implemented is
topic-based publish/subscribe where the events are key/value pairs.

The Event Manager is deployed as a service in the Hydra network and implements the following
interface:

Version 1.0 Page 44 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

<<interface>> EventManager

Hsubscribelin topic : String. in subscriber - URI) : Boolean
H+subscribeWithHID(in topic ;: String, in HID ; String) : Boolean
+unsubscriba(in topic © String, in subscribecURI) : Boolean
+unsubscribeWithHID(in topic @ String, in hid : String) : Boolean
HclearSubscriptions(in subscriber:URI) - Boolean
HclearSubscriptionsWithHID{in hid - String) : Boolean
+publish{in topicPattern : String, in event : Part[]} : Baclean
+setPriority(in topic © String, in priorty : Integer) : Boolean

Figure 24- Event Manager Interface

Interaction with the Event Manager can be performed using this service, by creating an Event
Manager client handling the calls to the Event Manager. To publish an Event to the Event manager,
the publish method must be called, passing the fopic of the Event, as well as an array of key-value
Part objects, that specify additional data associated with the Event.

EventManagerPort em = { Get Event Manager Client };
Part[] parts = { Get Part Array };
em.publish ("ExampleTopic", parts);

The code snippet above gives an example of using the EventManagerPort interface to publish an
Event. An application can subscribe to receive notifications of events by calling the subscribe or
subscribeWithHID methods. These methods take the topic of the events being subscribed to, along
with callback information, such the Event Manager can send notifications when the events are
published. With the subscribe method, this information is provided as a Web Service endpoint
address, whereas the subscribeWithHID method takes the HID of the subscriber, to then call back
through the Hydra Network Manager.

EventManagerPort em = { Get Event Manager Client };
em.subscribeWithHID ("ExampleTopic", <Subscriber HID>);

The above code snippet gives an example of a subscriber subscribing to the Event Manager.
Furthermore, subscribers must implement the following interface:

=zinterfaces>
EventSubscriber

nﬂtiry[String toEic. Fart[] event): boolean

The figure below shows the resulting deployment:

Version 1.0 Page 45 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

[
:EventManagerServer :Publisher
EventManager
O ——————+ -
F
x‘l'\
I
I
v .
O EventSubscriber

:Subscriber

Figure 25: Event Manager Deployment

Given such a deployment, the figure below shows a typical interaction with the EventManagerServer
(where the address is the address of the Subscriber web service that later should be notified):

:Subscriber :EventManager :Publisher
Server
—

1 1
subscribe(topic, address)
=

publishitopic, event)

1
|
1
notify(topic, event) !
1

Figure 26: Subscriber Notification

57 Context Awareness Framework

The Context Awareness Framework (CAF) isused within Hydra to define and make use of certain
context data, which is produced by sensors and devices at runtime. The user and developer can use
this framework to define context situations and their individual actions (application behaviours)
following these pre defined sets (there is also the term ‘rule’ used in the scope of the CAF). The CAF
can also be queried to extract context information used within Hydra or at the application level.

5.7.1 Context Manager

The Context Manager component, as described in D12.8, brings the ability for context-awareness,
that can be utilised by applications in whichever domain. The SDK component provides the interface
for communicating with the Context Manager, for publishing created contexts (created with the
IDE), to the Context Manager, as well as being able to query contexts, through Context Provisioning.

Version 1.0 Page 46 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.7.2

The Context Manager client can be retrieved using the methods described in the Hydra Middleware
Clients chapter 5.1.2, providing access to the Context Manager interface as described by the Context
Manager service of the Middleware API. The functionalities include:

Adding contexts to a Context Manager

Management of existing contexts

Adding named queries

Interface for executing named queries, and single queries

Existing Context Managers on the Hydra network have the SID (Service identifier - part of the
CryptoHID) as shown below:

SID = com.eu.hydra.caf.cm

The Context Manager has a relatively simple configuration, using the Hydra Configurator. The main
configurations that can be set, are:

¢ ContextManager.PID
o Persistent Identifier of the Context Manager. If not given, this is automatically
configured as "ContextManager: <machine-name>"
¢ ContextManager.DaqcPID
o The PID of the Data Acquisition Component the Context Manager should use to get
data. If no PID is given, then the Context Manager will try and find DAQC service in
its local OSGi registry, and use that instead. Failing that, the Context Manager will
be unable to subscribe for data.
¢ ContextManager.DefaultEventManagerPID
o The PID of the Event Manager that the Context Manager should publish events to
(as a result of reasoning performed by rule), if the rule action does not explicitly
state an Event Manager to use.

Contexts

Contexts are represented by the ContextSpecification in the Hydra Middleware API. This object
contains a definition of the context, including a set of properties and members of the context, as
described in D12.8. In addition to the definition, it may also contain a set of subscriptions or rules
(or both), depending on the type of the context (Application / Device / Semantic). Subscriptions are
used for the subscriptions for data from the Data Acquisition Component (see chapter 5.7.2).

Context Specifications can be persisted as XML documents, but are transferred as objects, as
described by the Context Manager WSDL, and also included in the Middleware API. The
specifications can be created using the Context IDE components, as described in the relevant
chapter of this document. These XML documents (with .ctx extensions) can be programmatically
processed into the ContextSpecification object using the ContextBuilderFactory class also provided
as part of the Middleware API. This class provides the functionality for marshalling the Java objects
to and from the XML representation.

ContextManager cm = <Get ContextManager client>

InputStream input = Class.class.

getResourceAsStream ("contexts/exampleContext.ctx") ;
ContextSpecification ctx =
ContextBuilderFactory.buildContext (input) ;
ContextResponse response = cm.createContextSpecification(ctx);

The code snippet above gives an example of using the ContextBuilderFactory to build the
ContextSpecification, and then sending it to a previously specified Context Manager, using the

Version 1.0 Page 47 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.7.3

5.7.4

createContextSpecification method. The ContextSpecifcation is built using a created InputStream to
a locally stored file, retrieved using the Java ClassLoader mechanism. Alternatively, the builder can
also take Strings as input. Additionally, the builder provides functionality for storing contexts locally,
to marshall them back from the object to a String, or to a provided OutputStream.

The ContextResponse element returned contains a Boolean variable stating the success of the
operation (the example given above being creating a context in the Context Manager). Additionally,
the response may also contain a set of ContextManagerError objects, specifying any errors
encountered during the processing of the request.

Examples of defined contexts are given in the relevant IDE section (see chapter 7.4).

Queries

The querying of context is a significant part of the Context Provisioning functionality of the Context
Manager, allowing for applications to use contextual information - to become ‘“context-aware”. The
Context Manager provides multiple different options for querying context, that can be used using the
interfaces exposed by the Context Manager. Mostly, queries are based around the ContextQuery
object (typically sent as part of a QuerySet) found in the Middleware API.

Queries, like Rules, are based around Drools language rules, albeit the query only being a LHS (left-
hand-side) of a rule, without the RHS action. As with contexts, QuerySet objects are created using
the Context IDE components, and can be persisted and loaded using the ContextBuilderFactory.
Query results are returned as encoded XML of the specified query outputs.

ContextManager cm = <Get ContextManager client>

InputStream input = Class.class.

getResourceAsStream ("queries/exampleQuerySet.ctq") ;
QuerySet querySet = ContextBuilderFactory.buildQuerySet (input) ;
ContextResponse response = cm.installQuerySet (querySet);

The code snippet above gives an example of loading a local QuerySet object, and installing it in the
previously configured Context Manager. The interfaces of the Context Manager supporting querying
of contextual data, are as follows:

Method Description

executeNamedQuery(String name, Executes a previously configured query,
Parameter([] params) referenced by its name, using the provided
parameters - if the query takes any.

executeSingleQuery(ContextQuery query) Executes the single query passed that is not
persisted in the Context Manager.

queryKeyValue(String contextld, Queries for the value of the specified key-value
String keyld, pair, within the given context. keyType refers to
String keyType) the type of the pair being queried (Property or
Member).

All queries return the QueryResponse object, containing the String result of the query, which may be
encoded XML, or simply the string-value of some data. Additionally, as with the ContextResponse, it
contains a set of ContextManagerError objects.

Example queries are given in the relevant IDE section (see chapter 7.4).

Context-sensitive Actions

Version 1.0 Page 48 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.7.5

5.7.6

The other modality of making an application “context-aware’, is through configuration of context-
sensitive actions as the output of context rules, reasoning over contextual parameters to determine
a significant change in context (as defined in the rules), that should then be reported to an external
Context Consumer (e.g. application). This is therefore an asynchronous architecture, with the
Context Consumer waiting to be reported to, rather than querying itself.

This itself can be achieved in two different ways. Firstly, the Context Manager may fire an event to a
specified Event Manager, to which the context-aware application is subscribed, such that it receives
the alert, and can interpret it as required in the flow of the application. This enables multiple
applications to respond to a single change in interpreted context, utilising the many-to-many
architecture of the Event Manager. As discussed in chapter 5.6 on the Event Manager, the Context
Consumer would then need to implement and expose the EventManagerSubscriber interface, with
the single method shown below:

public boolean notify(String topic, Part[] parts);

Secondly, the context-aware application may expose services on the Hydra network that should be
called as the output of context rules, rather than calling an Event Manager. This can be called using
the predefined Web Service call action, in the RHS of rules.

Data Acquisition Component

The Data Acquisition Component (DAqC) performs the acquisition of data, from data sources
including sensors and services, as well as events published by a particular data source. The
acquisition is based on subscriptions made to the Data Acquisition Component. It is primarily used
by the Context Manager for the retrieval of data, but may also be used by other managers or
applications that require frequent updates of data or events from a data source.

Configuration of the Data Acquisition Component is minimal, with the Daqc.PID configuration being
the only entry of significance that can be set using the configurator, to define the persistent
identifier of the

DataAcquisitionComponent dagc = <get DAgC Service>

DagcSubscription dagcSub = <get Subscription>
DagcSubscriptionResponse response = dagc.subscribe (dagcSub) ;

The code snippet above gives an example of using the DataAcquisitionComponent service to pass a
set of subscripitions, as a DagcSubscription object, to the DAQC, and receive the response. To then
receive the reports of the acquired data through this description, be it Events or pulled data, the
application must first implement the DataReportingService (of the Middleware API), as described
later.

Subscriptions

The SDK functionality of the DAQC provides the interface for configuring and cancelling subscriptions
for data, defined by the DagcSubscription object in the Middleware API. This object contains the HID
of the subscribing entity (for acquired data to be reported back to), as well as a set of subscriptions
for data from the two protocols - PUSH and PULL (see D12.8).

Attribute ID Description Required?
EventManager.PID PID of the Event Manager to subscribe to v
Event. Topic Topic of the published Event v
EventSource.PID PID of the data source publishing the Event x

Version 1.0 Page 49 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
EventSource.SID SID of the data source publishing the Event x
EventSource.HID HID of the data source publishing the Event x

Table 2: Push Protocol Attributes
Attribute ID Description Required?
Datasource.PID PID of the service to 'pull’ data from v
Datasource.SID SID of the service to 'pull’ data from x
Pull. METHOD Name of the method to call v
Pull.FREQUENCY Frequency (in ms) at which to 'pull' data v
Pull. NAMESPACE Namespace of the service x
Pull. SOAPACTION SOAP Action of the service x
Pull. RETURNTYPE Type of the data returned v
PlausibilityExpression Regular Expression to determine plausibility x
Table 3: Pull Protocol Attributes
The two tables above show the attributes understood by each protocol, that are passed in the
subscriptions to the DAqC.
5.7.7 Plausibility Checking
The Data Acquisition Component provides the facility for low-level analysis of retrieved data, to
check its plausibility status. As this is at the level of data directly from a data source, the level of
semantics involved within the plausibility checking mechanism, is relatively minimal.
The analysis of the data is performed by matching the data against a Regular Expression, which is a
pattern used to match strings of data.
~(=[0-911(-[01])2[0-911([0-9])2[0-9]11[0-2]1[0-9])8$
The example regular expression, above, demonstrates an example of a numerical plausibility
expression for a thermometer device that returns sensed temperature in Celsius. It specifies that
the data has a plausible value of between -19 and 129 degrees. Anything outside this range would
be flagged up as being implausible, and the subscriber notified, such that they can take appropriate
action.
5.7.8 Data Reporting

Data retrieved by the Data Acquisiton Component is reported back to the subscriber
asynchronously, and therefore (as with the Event Manager) any component seeking to use the Data
Acquisition Component to retrieve raw data and events from devices, must implement the
DagcReportingService interface, which is defined in the Middleware API, and shown below. This is a
simple interface containing a single method, reportAcquiredData, that passes the retrieved data in
the form of a Data Report.

public boolean reportAcquiredData (DataReport dataReport)

The DataReport object, as shown above, is the object in which the retrieved data is stored, to be
reported back to the subscriber, and is generic to handle data from both Push and Pul/ protocols. It
references the Data Id specified for the data being reported, so that the subscriber can identify the
data which is being reported, as well as the protocol used to retrieve it. The data itself is passed as
a set of key-value attributes. When reporting data from the Push protocol, these key-value attributes
represent the "parts" content of the Event about which the protocol was notified. In the case of the

Version 1.0 Page 50 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.8

Pull protocol, this is simply a single key-value piece of data, holding the value retrieved. All data sent
in the report is represented as a String.

As well as containing the data being reported, the DataReport object also contains both an update
on the status of the subscription that it is reporting for. This provides the mechanism for informing
the subscriber of a potential malfunction in the data source - when implausible data has been
retrieved, and also of when a data source is no longer available and data could not be retrieved.
This is essential to ensure that the subscriber is aware that they are no longer receiving data
updates from this device. It is then the responsibility of the subscriber to re-establish the
subscription, as and when the data source is available again.

Access Control Policy Framework

The Policy Framework provides policy-driven, access-control protection for Hydra devices and
applications. Policies can be utilised to ensure access to devices and applications is limited only to
those permitted access, including the ability to restrict the level of discoverability of an end-user’s
devices and applications.

The Policy Framework, consisting of its various components, provides the functionalities to create,
update, and maintain Policies, in addition to its core of evaluating access requests, and enforcing the
decisions made. The SDK functionality of the Access Control Policy Framework comes with three
distinct interfaces, as well as another interface for extension, these being:

e Policy Enforcement Point
o Called at the point of interception of a request
o Formats the credentials of the request in to an XACML RequestCtx object, and calls
the PDP for a decision
o Enforces the returned decision, handling any obligations specified in the Policy
e Policy Decision Point
o Receives the XACML RequestCtx object from the PEP
o Analyses the request against the policies stored in its policy repository
o Returns the determined decision
e Policy Administration Point
o Interface exposed by the PDP for the administration of XACML policies
o Active / deactivate XACML policies
e Policy Information Point
o Extension interface for PDP
o Adds functions for the PDP to use when they are referred to in XACML policies

5.8.1 Policy Enforcement Point

Typically, in the context of communication in Hydra, the Access Control Policy Framework is used to
provide access control at the level of the Network Manager, such that access decisions can be made
on receiving a request, through the SOAP Tunnel, for a hosted service, before actually forwarding
the payload of the request to the endpoint service. The Policy Enforcement Point (PEP), therefore, is
utilised by the Network Manager, when it receives a call, forwarding the various credentials it has
about the request, to the Policy Enforcement Point.

Although the PEP itself does not expose a service to the Hydra Network, it does register itself with
an HID and certificate, such that it can be identified as being a PEP. The SID of the PEP is as
follows:

SID = com.eu.hydra.policy.pep

Configuration of the PEP bundle specifies the following important configurations:

Version 1.0 Page 51 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
e Pep.PID = The PID of the registered PEP service
e Pep.PdpPID = The PID of the PDP service that the PEP should use to retrieve an access
decision
The PEP exposes a couple of methods also, used by the Network Manager, to pass the credentials of
a request. These are:
public PepResponse requestAccessDecision (String senderHid,
String senderCert,
String receiverHID,
String receiverCert,
String soapMsg,
String sessionId);
public PepResponse requestAccessDecisionWMethod (String senderHID,
String senderCert,
String receiverHID,
String receiverCert,
String method,
String sessionId);
Both methods request an access decision, but for different contexts. The Network Manager uses the
requestAccessDecision method, passing on the complete SOAP Message received from which the
PEP extracts the credentials of the action to be performed, whereas the
requestAccessDecisionWMethod method passes the name of the method directly instead. The
senderCert and receiverCert arguments are the encoded CryptoHID certificates for the two entities
involved at either end of the request.
5.8.2 Policy Decision Point
The Policy Decision Point (PDP) is a manager on the Hydra network that registers two different
services, one for the process of access requests, returning a decision, and another for the
administration of the XACML policies that the PDP uses in these decision making processes. This
administration service is described in the next chapter.
The PolicyDecisionPoint interface, of the Hydra Middleware API, declares just one single method, for
the evalutation of the XACML RequestCtx, as follows:
public String evaluate (String requestXml);
This method takes the RequestCtx object, encoded as a String, and evaluates it against the set of
policies in the policy repository. The ResponseCtx, containing the decision made along with any
obligations with the decision, is returned as encoded XML.
The SID of the PDP service is:
SID = com.eu.hydra.policy.pdp
The PDP has minimal configuration, using the configurator, as follows:
e PdpService.PID = PID of the PDP
e Pdp.UseDatabase = true / false depending on whether XMLDB based storage or file-
based storage is to be used for XACML policies
5.8.3 Policy Administration Point

The interface for actually authoring XACML policies is part of the IDE, and discussed in the chapter
7.7. It uses the interface exposed by the PDP that is distinctly separated from the service performing

Version 1.0 Page 52 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
the decision functionality, as described in the previous chapter. It sets out the following methods as
the PdpAdmin interface of the Middleware API:

public boolean activatePolicy(String policyId);
public boolean deactivatePolicy(String policyId);
public String[] getActivePolicyList();
public.String[] getInActivePolicyList();
public boolean publishPolicy(String policyId, String policyXML) ;
public boolean removePolicy(String policyId);
public String getPolicy(String policyId);
The key method involved here, is the publishPolicy method that publishes the policy with the given
id, policyld, with the XML-encoded content provided with the policyXML argument.
The SID of the PDP service is:
SID = com.eu.hydra.policy.pap
The PAP has even less configuration than the PDP, using the configurator, as follows:
e PdpAdminService.PID = PID of the PDP Administration service

5.8.4 Policy Information Point
The Hydra PDP is designed to be extensible, to easily allow for new functionality to the PDP through
adding additional Policy Information Point (PIP) components, which includes the ability to resolve
certain attributes, add additional functions that can be used in policies, add new data types, and so
on.

PIPs are implemented as OSGi bundles that register services, recognised by the PDP, that it uses to
extend the functionality, adding new Functions and Attribute Finders to the PDP at runtime. These
interfaces are PjpFunction, and PipModule.
PipFunction provides a method that the PDP can use to retrieve the custom XACML Functions
(com.sun.xacml.cond.Function) that it then installs to the PDP Function factory, such that they are
then immediately available for use. Therefore, the interface is simply:

public interface PipFunction {

public Set<Function> getFunctions();

}
Implemented PjpModule components define XACML AttributeFinders, that can retrieve attributes that
are not available in the request, but are specified in an XACML policy. The PjpModule itself is
essentially just an extension of the AttributeFinderModule defined by the XACML 1.x implementation
by Sun, providing a service name unique to the Hydra Access Control Policy Framework. Therefore,
the PipModule interface is:

public abstract class PipModule extends AttributeFinderModule {

}

5.9 Quality of Service Manager

Hydra operates within the scope of network embedded devices, like mobile phones, laptop and
desktop computers, etc. These devices have different capabilities in terms of computational power,
screen size and memory, etc. To address this fact and, e.g. playing media files, the QoS Manager
can be used to optimize the quality of the file depending on which device it is played on.

Version 1.0 Page 53 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
5.9.1 Functionalities
The QoSManager provides three functionalities:
1. To request the best-suitable service out of a range of Hydra services with same functionality.
2. To request a ranking list of best-suitable services.
3. To request a set of quality views of service parameters that are regularly updated from
ontology.
5.9.2 Dependencies
First of all the QoSManager requires the new Hydra Commons and the Network Manager as entry
point to Hydra middleware.
This tutorial and the usage of the QoSManager require knowledge of new Hydra Commons. For
processing specific service requests, the QoS Manager needs to query Hydra Ontology. For this the
Ontology Manager provides an accessible web interface for retrieving data values of QoS properties
of Hydra services and the (embedded) devices on which these services are running.
5.9.3 Used by
Inside an application built on Hydra, the Application Service Component is intended to consume the
QoSManager for retrieving the best-suitable services under consideration of QoS properties.
The self*-management component requires an regular update of the quality views of services
parameter, and thus needs to request a specific set of QoS properties for self-adaption.
5.9.4 Prerequisites
You need to have installed:
1. OSGi environment (e.g. Equinox)
2. MySQL (MySQL 5.1; the typical and complete version as well) and
3. Protégé 3.4.1
5.9.5 Installation

1. [Install new Hydra Commons and latest version of Network Manager.

2. Download the QoS Manager.

3. Create and Adapt QoSManager.properties configuration file in ECLIPSE\QoSManager\config\
4. Start a database server (For example, MySQI)

Start Protégé and load Ontology from 'Ontology' folder inside QoSManager.

Configuration

Before running QoS Manager some configuration needs to be done inside Protégé:

1. Select from the menu File -> Open...

Version 1.0 Page 54 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

2. Navigate to the destination of the recently checked out QoS Manager Bundle in order to
select the 'HydraOntologyManager.pprj' project file included in the 'Ontology’

< oeenroiee U W =
Suchen in: |E Ontolegy "| @l

B HydraOntologyManager.owl
B H_vdra{}ntulugyhlanager.ppd
E] Modelowl

B Playvideo1.owl

B PlayVideoZ.owl

@ PlayVideo3.owl

E] Playvideod owl

B UserProfiles.owl

URL

Server

Dateiname: | HydraOntologyManager.ppri |

Dateityp: | Supported Files (*.pprj, *.owl) ~|

| JUK | |)<C.anu:el|

Figure 27: Select project

And the OntologyProject is loaded:

Version 1.0 Page 55 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

F—

.
< HydraOntologyManager Protégé 3.4.1 (fileACAarchive\eclipsa_workspaces\gos_sandbox\eu.hy i q AOntology\Hydra... (s =e] S|

File Edit Project OWL Reasoning Code Tools Window Collaboration Help
NEW B0 myg @9 HED > <§pmn§gé

@ etadata(ApplicationProfiles.owl) | | OWLClasses | B Properties | 4 Individuals | = Forme

ONTOLOGY BROWSER INDIVIDUAL EDITO

For Project: 4 HydraOntologyManager For Individual: <@> Ontology(http:/fww w . owl-ontologies. com/ApplicationProfiles.owl) (instance of owl:Ontology, intern...

Ontologies E“; ﬁ ﬁ' % = Ontology URI

iRy G -E e s Earm A I |r|ttp'ﬂwww ow l-ontologies com/ApplicationProfiles_owl
@ Dptoiogy bt swel stanford. edwontologie s bl
@ Ointologyi hitlo & swrl stanford. edwontologies’s, |j ﬁ: IE Eﬁ D Annotatior
<@> Ointology hitte & swel stanford edwontaiogle s DUl o Vale | e |
@ Dptoiogy bt X swrl stanford. edwontalogie s bu rdfs-comment .
@ Ointology hitto HAewww. owilontologies. comiUserPr .
@ Ointology bt S swel stanford edw ontoiogie s Hul,
@ Dptologyhite X sowrl stanford. edwontologie s7h,
> @ Ointologyi hitto Aawww. owilbontologie s, com'Playl
<@> Owptology kit Swww owlontologies. com'model.
| 3 @ Ointolome Ao Awww owlontologies. cory Pl
> @ Cintoiog BitpAwww. onwilobtologie 5. oo Pigyla
> <@> Cintadog B wmne ol o ptologie s ook Pyl
@ Dntaiagy hitle X swrl stanford. edwontalogie s bul

Default Namespace
hitp:/fww w owl-ontologies. com/ApplicationProfiles. ow i

Namespace Prefixes 'E
Prefix | Namespace |

http:/iwww.owl-ontologies. com/Application Profiles.ow B [+

abox http:/iswrl.stan ford.edufontologies/built-ins/3.3/abox. ow i

m http:/iwww owl-ontologies com/model ow B

owl http-/iwww . w3.0rgi2002/07 /0w i

play\ideo1 http:iiwe e w . owl-ontologies. com/PlayVideo1 Ont.ow B ol

playVideo2 http:/fwww owl-ontologies com/PlayVideo2 . owB

play\Video3 http:/iwww.owl-ontologies. com/PlayVideo3.owb

play\Videod4 http:/iwww.owl-ontologies. com/PlayVideo4.owhE

protege http://protege.stanford.edu/plugins/owl'protege®

rdf http-/iw ww . w3.orgd1999/02/22 -rdf-syntax-ns# [~

a

[» iy = =

Figure 28: Ontology Browser

3. Select from the menu OWL -> Ontology repositories..., and the following dialogue is loaded

Version 1.0 Page 56 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

<¢, Repository Manager u .I

|
| | Project reposttories | Global repostories

Project repositories

=

Irﬁ

¥ Local folder Ciarchive'eclipse_workspaces\gos_sandbox\eu.hydramiddleware.qosmanageriOntology * b=
Force Read-Only

hitp:/hwww owl-ontologies. comiApplicationProfiles.owl
[Charchive\eclipse_worspacesigos_sandbox\eu hydramiddleware. gosmanagenCntology'\HydraOntologyManager.owl)

hitp:/hwowew . owl-ontologies. com/PlayVideo1 Ont.ow!
[Charchive\eclipse_workspacesiqgos_sandbox\eu hydramiddleware gosmanagerOntology'PlayWideo! .owl)

hitp:/iwwew . owl-ontologies. com/PlayVideoZ.ow!
[Charchive\eclipse_workspacesigos_sandbox\eu hydramiddleware. gosmanagerCntology'\PlayVideoZ. owl)

hitp:/hwww owl-ontologies. com/PlayVideo3.ow!
[Charchive\eclipse_worspacesigos_sandbox'eu hydramiddleware. gosmanagerOntology'PlayVideod. owl)

hitp:iherwew owl-ontologies. com/PlayVideod.ow!
[Charchive\eclipse_workspacesiqos_sandbox\eu hydramiddlewsre gosmanagerOntology'PlayVideod. owl)

hitp:/hwwew owl-ontologies. comiUserProfile. owl
[Charchive\eclipse_worspacesiqgos_sandbox'eu hydramiddleware gosmanagenCntology' UserProfiles.owl)

hitp:hwww . owl-ontologies. commodel. owl 1
[Charchive\eclipse_workspacesigos_sandbox'eu hydramiddleware. gosmanagerOntologyiModel owl)

¥ Local folder C:archiveleclipse_workspaces\gos_sandbox\eu.hydramiddleware.qosmanageriOntology F P =

Force Read-Only

hitp:/hwowew . owl-ontologies. comlApplication Profiles.owl
[Charchive\eclipse_worspaces\qos_sandbox\eu hydramiddleware. gosmanagerCntology'HydraOntologyManager.owl)
hitp:/fwrwew . owl-ontologies. comPlayVideo10nt.ow|
[Charchive\eclipse_workspacesigos_sandbox'eu hydramiddleware. gosmanagerCOntology'PlayVideo! .owl)
hitp:/hwww owl-ontologies. com/PlayVideoZ.ow!
[Charchive\eclipse_worspacesigos_sandbox'eu hydramiddleware. gosmanagerOntology'PlayVideo2 owl)
hitp:/iwwew . owl-ontologies.com/PlayVideo3.ow!
[Charchive\eclipse_worspacesiqgos_sandbox\eu hydramiddleware. gosmanagerOntology'\PlayVideod.owl)

Figure 29: Repository Manager

1]

4. On each tab, i.e. on the Project repositories and Global repositories tab, press the '+'-
button, and select 'Local Folder' as the radio button option, and select as your destination
the 'Ontology' folder.

5. Close the dialogue and another message dialogue asking you to perform a reload appears.

= ™
e sonres U O,

The order of repositories has changed.
The system needs to reload the current project. Press ‘reload’ to save and reload, or cancel to do a manual reload.

|| Relad ||| Cancel |

Figure 30: Dialog Box

6. Select the 'Reload' button and finally save the project, and close Protégé.

Version 1.0 Page 57 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

While running configure via Hydra Commons Configurator

(First, setup the run configuration of the OSGi bundle set, as described in next section)

For providing a unique and better interface for configuration, the QoS Manager has been ported to
the Hydra Commons Configurator.

While running the OSGi configuration, all the listed properties can be changed via
http://localhost:8082/HydraStatus#.

Just type in a value field of a property and push the 'Update Configuration' button.

To make the QoS Manager perform correctly, the following fields (PID, ontology folders, MySQL
configuration etc) need to be adapted accompanied with exemplified values:

QoSManager.PID= QoSManager:Hydra
hydraontology.path=C:/archive/workspace/hydra/Ontology/HydraOntologyManager.owl
globalrepositories.path=C:/archive/workspace/hydra/Ontology/

mysql.username=root

mysql.password=otto81

mysql.port=3306

mysql.defaultdb=hydra

See also this screenshot given below:

2

HYDRA

Hydra

Hydra Configurator Network Manager Status Event Manager Status

Available Configurations com.eu.hydra.qosmanager

com.eu.hydra.security.core

com.eu.hydra.eventmanager

hydraontelogy.path: C:/archive/workspacefhydra/Ontology/HydraOntologyManager.owl

com.eu.hydra.network

com.eu.hydra.qesmanager

Version 1.0

mysql.defaultdb: hydra

mysql.password: otto81

mysq|l.port: 3306

mysql.username: root

QoSManager.CertificateReference: 025¢679¢c-36ce-41f8aee-81balci8e226
QoSManager.NetworkManagerAddress: hitp://localhost8082/axis/services/NetworkManagerApplical

QoSManager.PID: QoSManagerHydra

Angh 1 L trua

Update Configuration

All content copyright © 2009 Hydra project, all rights reserved

Figure 31: Hydra Status Page

Page 58 of 157 30/04/2010

http://localhost:8082/HydraStatus

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

5.10 Execution in eclipse

The bundle has been tested using the equinox OSGi framework.

1.

Name:

% Bu

Fram

type filter text

Create in the 'Run Configurations..." menu a new launch configuration for the OSGi
framework. As all related bundles have been developed as OSGi Declarative Services there is
no need for setting start levels.

Choose the prepared QoSManager lauch configuration, or create a new run configuartion
and select the following bunldes depicted in the screeenshot below (please consider to
select the two mortbay.*-bundles - for them the screen was too small):

QoSManager

ndles . {x)= Arguments | (5| Settings | £ Tracing| B§ Environment| = Common

ework: Default Start level: 4 = Default Auto-Start:

[Select Al]
Bundles StartLevel Auto-Start i
[Deselect Al]
4 [| Workspace
= CryptoManager (1.1.0) default default l Add Working Set...]
[¥] 4= EventManagerServerBundle (1.0.0) default default
<= HydraManagerConfigurator (1.0.0.qualifier) default default l fddReguired Bupdles]
[¥] 4= HydraMiddlewareAPI (1.0.0.qualifier) default default l Restore Defaults]
[¥] 4= HydraMiddlewareClients (1.0.0.qualifier) default default
[¥] 4= HydraWSProvider (1.0.0.qualifier) default default
[¥] == Log4j (1.1.0) default false
[¥] 4= Network_Manager_Bundle (1.7.0.qualifier) default default
[¥] 4= QoSManagerBundle (1.0.0) default default
[¥] 4= QoSManagerTester (1.0.0.qualifier) default default
|| Target Platform
?J: javax.serviet (2.5.0.v200806031605) default default
?J: javaxxml (1.3.4.:200902170245) default default
[7] ¥ org.apache.commaons.codec (1.3.0.420080530-1600) default default =
[7] ¥ org.apache.commans.hitpclient (3.1.0.420080605-1935) default default
[7] ¥ org.apache.commans.lang (2.3.0.4200803061910) default default
[7] ¥ org.apache.commans.logging (1.0.4.v200904062259) default default
[7] ¥ org.apache.logdj (1.213.4200903072027) default default
[7] ¥ org.apachexalan (2.7.1.x200905122109) default default
[7] ¥ org.apachexerces (2.9.0.4200909240008) default default
[7] ¥ org.apachexml.resolver (1.2.0.v200902170519) default default
[7] = org.apachexml.serializer (2.7.1.v200002170519) default default
[7] = org.eclipse.equinox.cm (1.0.100.200911161650) default default
[7] %= org.eclipse.equinox.comman (3.5.1.R35x_v20000807-1100) 2 true
[7] %= org.eclipse.equinox.ds (1.1.1,R35x_v20090806) default true
[7] = org.eclipse.equinox.http jetty (2.0.0.v20090520-1800) default default
[7] %= org.eclipse.equinox.http.registry (1.0.200.v20030520-1300) default default
[7] = org.eclipse.equinox.http.servlet (1.0.200.v20090520-1800) default default
[7] %= org.eclipse.equinox.preferences (3.2.300.v20090520-1800) default default
[7] = org.eclipse.equinox.registry (3.4.100.v20030520-1300) default default
[7] = org.eclipse.equinox.util (1.0.100.v20090520-1800) default default
[7] %= org.eclipse.osqi (3.5.1.R35x_v20090827) 1 true [¥] Only show selected bundles
171 ¥ ora.eclinse.nsni services (3.2.0.020090520-1800) default default T | 34 out of 53 selected

#In

clude optional dependencies when computing required bundles

[7] Add new workspace bundles to this launch configuration automatically

[¥] Validate bundles automatically prior to launching Validate Bundles

Figure 32: Bundles for QoS Manager

Switch to the 'Arguments' tab and put inside the VM Arguments:

Version 1.0

Page 59 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

-Declipse.ignoreApp=true -Dosgi.noShutdown=true -
Dorg.osgi.service.http.port=8082

As Protégé related libraries require a large amount of user memory it is recommended that the VM
line with -Xms and Xmx, in particular -Xmx option in order to prevent a Java heap space exception:

-Declipse.ignoreApp=true -Dosgi.noShutdown=true -
Dorg.osgi.service.http.port=8082 -Xms512m -Xmx1024M

5.10.1 Usage

A QoS tester bundle can be downloaded. It has been implemented according to new Hydra
Commons.

There is the following code in component class activate-method calling the getRankingList
functionality of QoS Manager:

protected void activate (ComponentContext context) {

RemoteWSClientProvider service = (RemoteWSClientProvider)
context.locateService (RemoteWSClientProvider.class.getSimpleName ()) ;
try |
nm =

(NetworkManagerApplication) service
.getRemoteWSClient (
NetworkManagerApplication.class.getName (),

//
"http://localhost:8082/axis/services/NetworkManagerApplication"
null,
false);
createCryptoHID() ;
// Get Remote QoSManager
String gosManagerHID = getQoSManagerHID (myHID) ;
//Change if QoSManager is running on remote
machine

String gosManagerIP="localhost";

String targetUrlHydraEventManager =
"http://" +gosManagerIP+ ":" +

System.getProperty ("org.osgi.service.http.port")+
"/SOAPTunneling/0"
+ "/ o+
gosManagerHID +
"/0/hola";

QoSManager gosManager =
(QoSManager)
service.getRemoteWSClient (QoSManager.class.getName (),
targetUrlHydraEventManager, false);

String result =
gosManager.getRankingList (xml1QoSRequest) ;

Version 1.0 Page 60 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

LOG.debug ("result="+result) ;

} catch (IOException e) {

LOG.error (e.getMessage()) ;
} catch (Exception e) {
LOG.error (e.getMessage()) ;

}
The appropriate response to this request looks like:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ResultlList xmlns="http://gosmanager.hydra.eu.com">
<Rank>

<Position>1</Position>

<Device>Dell Laptop</Device>
<ServiceName>PlayVideo3</ServiceName>
<HID>http://en.wikipedia.org/</HID>
<Rate>5</Rate>
<AveragePercentage>62.33%</AveragePercentage>
<Details>

<Detail>

<Property>cost</Property>
<Value>2.0</Value>

<Unit>euro</Unit>

</Detail>

<Detail>
<Property>powerconsumption</Property>
<Value>90.0</Value>
<Unit>watts</Unit>

</Detail>

<Detail>
<Property>screensize</Property>
<Value>15.0</Value>

<Unit>inch</Unit>

</Detail>

</Details>

</Rank>

<Rank>

<Position>2</Position>
<Device>Pioneer Plasma</Device>
<ServiceName>PlayVideol</ServiceName>
<HID>http://www.youtube.com/</HID>
<Rate>4</Rate>
<AveragePercentage>34.61%</AveragePercentage>
<Details>

<Detail>

<Property>cost</Property>
<Value>3.0</Value>

<Unit>euro</Unit>

</Detail>

<Detail>
<Property>powerconsumption</Property>
<Value>380.0</Value>
<Unit>watts</Unit>

</Detail>

<Detail>
<Property>screensize</Property>
<Value>50.0</Value>

<Unit>inch</Unit>

Version 1.0 Page 61 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

511

</Detail>

</Details>

</Rank>

<Rank>

<Position>3</Position>
<Device>Samsung Projector</Device>
<ServiceName>PlayVideo2</ServiceName>
<HID>hid2</HID>

<Rate>3</Rate>
<AveragePercentage>66.67%</AveragePercentage>
<Details>

<Detail>

<Property>cost</Property>
<Value>4.0</Value>

<Unit>euro</Unit>

</Detail>

<Detail>
<Property>powerconsumption</Property>
<Value>48.0</Value>
<Unit>watts</Unit>

</Detail>

<Detail>
<Property>screensize</Property>
<Value>80.0</Value>

<Unit>inch</Unit>

</Detail>

</Details>

</Rank>

</ResultList>

Storage Architecture

The Hydra Storage Architecture is designed to enable developers to integrate any kind of storage
into the Hydra middleware. Therefore storage is realised as a virtual devices. These devices have to
be Hydra enabled, so they can be recognised by the Hydra Discovery Manager and accessed using
the Network Manager. From the application developer’s view these devices behave like any other
Hydra enabled device. Figure 33 below shows a short overview over the basic architecture.

The most important part for developers integrating storage is the Storage Manager Device. As the
Storage Devices the Storage Manager Device is realised as virtual Hydra enabled device. One of
these exists on any physical Hydra device bringing storage into the network. The Storage Manager
Device is responsible for the administration of the local Storage Devices. A closer description of the
Storage Manager Device is given in the following sections.

The Storage Devices are connectors to some kind of storage in Hydra. There can be different
devices using different APIs for different kinds of storage. The File System Device for example is
designed to realise an easy to use access to storage structured in files and directories. It is also
shown that the API is specialised to support this kind of storage. A Database Storage Device would
offer an API specialised for database storage by using, e.g. SQL queries.

Version 1.0 Page 62 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

StorageManagerDevice I LockManagerDevice I

Responsible for Responsible for

- device administration - mutual exclusion
<<abstract>> Application

StorageDevice

needs to store data, is

Different devices types responsible for mutual
are supported by different

exclusion
Storage Managers
DatabaseDevice FileSystemDevice CookieDevice
rational structured data Data structured in Files key/value structured
and Directories storage
Storage Storage Storage
(Backend) (Backend) (Backend)

'”IEig_u’l:e 33: Basic architecture of storage in HycTr; _

5.11.1 Implementation details

The managers implemented in the prototype of the Hydra Storage Architecture were developed as
UPnP devices created by Limbo and are available as OSGi bundles. The managers can be reached
using UPnP or using the created Web services using the same API. Therefore the API of all
managers has to use only those two devices which use UPnP.

The first limitation concerns numbering. UPnP supports only 32 bit integers, while the Hydra Storage
Architecture often needs 64 bit. Therefore all numbers are sent as strings. Further UPnP does not
support complex types. Therefore all complex data types are converted into XML and sent as a
string. The StorageManagerCommonBundle is an OSGi bundle that implements all the complex data
types. It can be used by Java applications or other OSGi bundles to convert Strings in Objects and
Objects in Strings. The complex data structures used most often are the response types. As UPnP
does not support exceptions, any method that could fail has to return an error code.

<<abstract>>
Response

errorCode : int
errorMessage : string

VoidResponse StringResponse StringVectorResponse

result : string result : Vector<string>

Version 1.0 Page 63 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Figure 34: Some examples for Responses

The figure above shows a small subset of the used responses. The abstract class Response holds the
error code of an operation. The class ErrorCodes defines the legal values and the meaning of the
code in different areas. The error code 0 is reserved as marker for a successful operation.
Additionally a response includes an error message. Here the sender of the response may store error
information, which could help users or developers to discover why an operation failed. The
subclasses of Response differ in the type of the delivered result. The type can be none (as in
VoidResponse), a simple type (as in StringResponse), or a complex type stored as XML data in a
string (as in StringVectorResponse). As you will see later on, there are a variety of different
subclasses of responses for different response types.

Listing 5.11.1: StringResponse as an example of the XML representation of a response

<stringResponse>
<error errorcode="1 ">
error message

</error>

<result>

<value>

response

</value>

</result>
</stringResponse>

Listing above shows the XML representation of a StringResponse. At first it is important to know that
each subclass sets its own title of the root element of the response. The title should be equal to the
class name and should be the type of the result followed by Response. In the example in line 1 the
root type is set to StringResponse. In line 2 the element error can be seen, which holds the error
code as an attribute. The error message is stored as the content of this element in line 3. An error
can also be an empty element if no error message is returned. The element result in line 5 is owned
by the subclass. It exists in any subclass but attributes and content differ. A StringResponse stores
an element of type value here if the result of the StringResponse was not null.

Listing 5.11.2: Dictionary representation in XML

<properties>
<keyl>

valuel
</keyl>

<key2>

value?2

</key2>
</properties >

The class offers methods to build Strings containing responses without caring about the response
objects. This can be useful if a developer uses the Limbo generated stubs of the devices directly.
This class also offers methods to convert special objects into XML. An example for such an object is
shown in the Listing 5.11.2. Each dictionary is placed in element properties. The contents of this
element are the key/value pairs of the dictionary. The key is used as name of the tag while the value
is used as content of the tag.

5.11.2 Storage Manager Device

As explained before the Storage Manager Device is responsible for the administration of the Storage
Devices. Therefore it supports a humber of Storage Device types. The implementation supports the

Version 1.0 Page 64 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

File System Devices. The Storage Manager Device is implemented as prototype in the OSGi Bundle
StorageManagerDeviceServer.

5.11.3 API

The Storage Manager Device is used to administrate storage. Therefore its API has to support the
configuration of all supported Storage Devices.

StorageManagerDevice

createFileSystemDevice(filesystemname : string, config : string) : VoidResponse
createFileSystemDeviceLocal(filesystemname : string, config : string) : VoidResponse
deleteFileSystemDevice(filesystemname : string) : VoidResponse
deleteFileSystemDeviceLocal(filesystemname : string) : VoidResponse
getSupportedFileSystemDevices() : StringVectorResponse

getFileSystemDevices() : StringVectorResponse
findFileSystemDevice(filesystemname : string) : StringResponse
updateFileSystemDevice(filesystemname : string, config : string) : VoidResponse
updateFileSystemDeviceLocal(filesystemname : string, config : string) : VoidResponse

Figure 35: API of a Hydra Storage Manager Device

Figure 35 above shows the API of the Storage Manager Device. The following list includes a
description of the single methods:

createStorageDevice(config : string) : StringResponse This method is responsible for setting
up a new storage device.

createStorageDevicelLocal(config : string) : VoidResponse This method is only used for the
communication between Storage Manager Devices. By this method a Storage Manager Device can
propagate the creation of a Storage Device to other Storage Managers, which should also hold the
device.

deleteStorageDevice(id : string) : VoidResponse This method removes an existing device.

deleteStorageDeviceLocal(id : string) : VoidResponse This method is only used for the
communication between Storage Manager Devices. By this method a Storage Manager Device can
propagate the deletion of a Storage Device to other Storage Managers, that should also delete the
device.

getStorageDevices() : StringVectorResponse Gives a list of the IDs of all local hosted storage
devices.

findStorageDevice(id : string) : StringResponse This method delivers the configuration of a
Storage Device.

updateStorageDevice(config : string) : VoidResponse This method is responsible for updating
an existing storage device.

updateStorageDeviceLocal(config : string) : VoidResponse This method is only used for the

communication between Storage Manager Devices. By this method a Storage Manager Device can
propagate the update of a Storage Device to other Storage Managers, which also hold the device.

Version 1.0 Page 65 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

HydraSMConnector

HydraSMConnctor(wsAddress : String)

createFileSystemDevice(filesystemname : String, config : String) : VoidResponse
deleteFileSystemDevice(filesystemname : String) : VoidResponse
getSupportedFileSystemDevices() : StringVectorResponse
getFileSystemDevices() : StringVectorResponse
findFileSystemDevice(filesystemname : String) : StringResponse
updateFileSystemDevice(filesystemname : String, config : String) : VoidResponse

Figure 36: API of HydraSMConnector

5.11.4 Client

As part of the prototype there is also a Client for the Storage Manager. This client holds Limbo
generated method stubs for the Storage Manager Device. Developers can use these by including the
class torageManagerLimboClientPortimpl. To make it easier for Java developers to access the
Storage Manager the StorageManagerDeviceClientBundle extends the automatically created client by
the class HydraSMConnector.

Figure 36 above shows the API of the HydraSMConnector. It only holds the methods meant to be
used by users of a Storage Managers Device, not the methods meant for communication between
Storage Manager Devices.

HydraSMConnector (wsAddress : String) This constructor creates a new HydraSMConnector
denoting to the given Storage Manager Device.
Using this class it is quite easy to access a Storage Manager Device in Java.

Listing 5.11.3: Example of a Java application using a Storage Manager Device

package de.douglas2a.hydra.testkram;

import java.io.IOException

import com.eu.hydra.limbo.storagemanagerdevice.client.
HydraSMConnector;

import com.eu.hydra.storage.helper.ErrorCodes;

import com.eu.hydra.storage.helper.StringVectorResponse;
public class StorageManagerTester {

public static void main (String args[]) {
String path = "http://localhost:8083/services/storagemanager";
try {

HydraSMConnector smClient = new HydraSMConnector (path);
StringVectorResponse svr =
smClient.getSupportedStorageDevices () ;

if (svr.getErrorCode()!= ErrorCodes.EC NO ERROR) {
System.out.println(svr.errorOut ()):;

} else {

if (svr.getResult () .isEmpty()) {

} else {
System.out.println ("Supported Devices:");
for (Stringtype:svr.getResult()) {
System.out.println(" " + type);
}
}

Version 1.0 Page 66 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

}
} catch (IOException e) {
e.printStackTrace () ;
}
}
}

5.11.5 Command Line Client

The StorageManagerClientCLI is a command line interface to access a Storage Manager Device. It
can be used to maintain Storage Devices hosted by the Device. The eclipse project includes a
description for exporting the command line client including all dependent libraries as jar file. A call of
the command line client has to follow the form:

host> java -jar StorageManagerClientCLI.jar \\
SMD_WS_ADDRESS command (parameters ...)
SMD_WS_ADDRESS is the Web Service Address of the Storage Manager Device.

5.11.6 File System Devices

A File System Device is the representation of storage structured in files and directories in the Hydra
Storage Architecture. There are different kinds of File System Devices available, which store the data
in different ways, but all File System Devices share the same API. Therefore, from the developer’s
point of view, it does not matter which kind of File System Device is accessed.

5.11.7 API

The API of the File System Device is designed to be close to functions to access files and directories
in operating systems. The File System Devices are accessed using a network and must be reachable
using web services and UPnP. Therefore, it is impossible to use streams and all accesses to files
have to be block oriented.

Listing 5.11.4: A HydraFile denoting a directory

<hydraFile

path="/"

isDirectory ="true "
aTime="1234221"
mTime="1205346"
cTime="1131237"\>

Listing 5.11.5: A HydraFile denoting a file

<hydraFile

path="/test.txt"

isDirectory="false"

aTime="1234201"

mTime="1205002"

cTime="1131248"

size="4096">

<properties>
<eu.com.hydra.storage.fsd.encoding.method>

text

Version 1.0 Page 67 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

</eu.com.hydra.storage.fsd.encoding.method>
<mimeType>

Text:ascii

</mimeType>

</properties>

</hydraFile>

The HydraFile is an important part of the File System Device API. This data structure is used to
exchange metadata information about a file or directory. It is implemented in the
StorageManagerCommonBundle.

Listing 5.11.4 shows the XML representation of a directory as a HydraFile. Each file holds the path to
the file or directory on the File System Device in the attribute path. The field isDirectory holds a
boolean value which is true if path denotes a directory. If it is set to false, path links to a file, as the
File System Devices only support files and directories.

Links, sockets, pipes, and other entities supported by some operating systems are not supported by
File System Devices. The fields aTime, mTime and cTime hold the timestamps of the last access, last
modification, and creation of the file or directory.

If the HydraFile denotes a file, it has some additional fields, like shown in Listing 3.5. The field size
holds the size of the file in bytes. Files can also have properties in the Hydra Storage Architectures.
These are submitted in the child element properties. The properties are stored as dictionaries. In
Listing 5.11.5 line 9 holds the property eu.com.hydra.storage.fsd.encoding.method with the value
text in line 10. This property has a special meaning. If it is set to base64 the File System Device will
encode any data read from the file in base64 format. Any data written to the file is supposed to be
in base64 format and will be decoded before writing. This way binary data can be submitted to the
file. If the property is set to text, no conversion will be performed.

Another structure used by the File System Device is called StatFS. This data structure is used to give
a client the most significant information about a File System Device with one method call. In the
implemented prototype this method only delivers the size of the File System device, the free space,
and the available space.

Figure 37 below shows the API of the File System Devices.

Version 1.0 Page 68 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

FileSystemDevice

clearFile(path : string) : VoidResponse

copy(sourcePath : string, destinationPath : string) : VoidResponse
createDirectory(path : string) : VoidResponse

createFile(path : string, properties : Dictionary) : VoidResponse
existsPath(path : string) : BooleanResponse

getDirectoryEntries(path : string) : HydraFileVectorResponse
getFile(path : string) : HydraFileResponse

getFreeSpace() : LongResponse

getld() : string

getSize() : LongResponse

getStatFs() : StatFSResponse

move(sourcePath : string, destinationPath : string) : VoidResponse
readFile(path : string, start : long, size : int) : StringResponse
removeDirectory(path : string, recursive : boolean) : VoidResponse
removerFile(path : string) : VoidResponse

setFileProperties(path : string, properties : Dictionary) : VoidResponse
setFileProperty(path : string, propertyName : string, propertyValue : string) : VoidResponse
truncateFile(path : string, size : long) : VoidResponse

writeFile(path : string, start : long, data : string) VoidResponse

Figure 37: API of a Hydra File System Device

5.11.8 File System Device types

A new different File System Devices has been developed to satisfy different storage demands in the
prototype. Figure 38 below shows an overview over the different File System Devices.

Version 1.0 Page 69 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0

<<agbstract>>

FileSystemDevice

Defines the API for accessing
Data and Metadata

LocalFSD ReplicatedFSD StripedFSD
stores Data on a local stores Data on each distributes Data over
file system backend device

all backend devices

if

backend File System Devices

Storage
(local FS)

Figure 38: Basic architecture of file system

Page 70 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

6. Device Development Kit

This chapter presents the Device Development Kit (DDK), and specifically the process of Hydra-
enabling a device. The Hydra Middleware aims at developers who want to use network embedded
devices and built applications on top of the the layer that communicates with these devices. There
are a huge variety of network devices, with even ore on the horizon. These devices communicate
with different protocols and standards. To make use of a unified method, the Hydra DDK provides
the necessary functionalities to abstracts from their different levels and standards and makes it
easier for application developer to communicate with different devices in the same way.

6.1 DDK Components and Tools

6.1.1 Limbo

This tutorial aims at giving Limbo users a guide for generating services using the Limbo compiler.
The Limbo compiler is used to create Web Service interfaces for devices, in order to communicate
and set the necessary functionalities to discover the device and its services within the Hydra
Framework. For this purpose, a simple example of a thermometer service is used. The device used is
a PICO THO3 thermometer, which is the same one used in the first Hydra prototype.

Two operations, getStatus and getTemperature, are defined in the service and they both take as
argument a thermometerID which is a string that identifies a thermometer for the case of having
more than one. This example has also been used to develop the state machine part of Limbo that
will be explained further ahead in this document.

The thermometer service will provide the following functionality (written as Java code):

public interface th03 {

public boolean getStatus(String thermometerId) ;

public double getTemperature (String thermometerId);
}

6.1.1 Obtaining and Installing Limbo
The prerequisites for running Limbo are:
e Java 5 or later
e the Hydra Event Manager (if using the state machine part of Limbo)

Once the limbo is downloaded, to install, it needs to be unzipped to an installation directory, called
<limbo>. It is assumed that commands are invoked in the <limbo> directory.

Using Limbo
e Using Limbo includes the following steps:
o Describe targeted device in Hydra's device ontology (optional)
e Describe the service in a WSDL file. Reference the device description from the WSDL file
e Describe the service-related statemachine in the device ontology (optional)
e Run the Limbo compiler on the WSDL file

e Implement and deploy the device-specific service

Version 1.0 Page 71 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
e Run the service
Describing the device in the Hydra ontology
A device has basic device type information (modelled with Device.owl), its associated software
platform (SoftwarePlatform.owl), hardware platform (Hardware.owl), and also a state machine to
model the device state transitions at run time (StateMachine.owl). Therefore when adding a device,
the related hardware and software, state machine information should be encoded in the related
ontologies.
The Hydra ontologies may be found in <limbo>/resources/.
In the device ontology (Device.owl), the following code is added for an indoor thermometer (the
model number is pico th03):
<InfoDescription rdf:ID="PicoThO03 info">
<modelDescription
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">3
channels</modelDescription>
<manufacturerURL
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">www.picotech.com</m
anufacturerURL>
<friendlyName
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">PicoTh03</friendlyN
ame>
<modelName
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">th03</modelName>
<manufacturer
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">Pico technology
limited</manufacturer>
<modelNumber
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">th03</modelNumber>
</InfoDescription>
<Thermometer rdf:ID="PicoTh03 Indoor">
<deviceld rdf:datatype="&xsd;string">PicoTh03 Indoor</deviceId>
<hasHarware rdf:resource="&Hardware;PicoTh03 hardware"/>
<hasStateMachine rdf:resource="&state;PIcoTh03 Indoor sm"/>
</Thermometer>
The hardware information is added in the hardware ontology (Hardware.owl):
<DeviceHardware rdf:ID="PicoTh03 hardware">
<primaryCPU>
<CPU rdf:ID="PIC16C54C">
<cpuName rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">
PIC16C54C</cpuName>
</CPU>
</primaryCPU>
</DeviceHardware>
The software information can be left empty as this thermometer does not have a software platform
that supports web service deployment.
6.1.2 Describing the service in a WSDL file

In this case, a simple WSDL file is used for a thermometer service that contains two operations, one
for getStatus and another for getTemperature. The WSDL file, which is also in
<limbo>/tutorial/wsdl/, is shown below:

<?xml version="1.0" encoding="UTF-8"?2>

Version 1.0 Page 72 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsocap.org/wsdl/http/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ns="http://hydra.eu.com/th03/"
targetNamespace="http://hydra.eu.com/th03/"
xmlns:hydra="http://hydra.eu.com/" >
<message name="thermResponseDouble">
<part name="result" type="xs:double"/>
</message>
<message name="thermRequest">
<part name="thermometerId" type="xs:string"/>
</message>
<message name="thermResponseBoolean">
<part name="status" type="xs:boolean"/>
</message>
<message name="thermRequestl">
<part name="thermometerIdl" type="xs:string"/>
</message>
<portType name="THO3Port">
<operation name="getTemperature">
<input message="ns:thermRequest" name="thermRequest"/>
<output message="ns:thermResponseDouble"
name="thermResponseDouble" />
</operation>
<operation name="getStatus">
<input message="ns:thermRequestl" name="thermRequestl"/>
<output message="ns:thermResponseBoolean"
name="thermResponseBoolean"/>
</operation>
</portType>
<binding name="THO3SOAP" type="ns:THO3Port">
<hydra:binding
device="file:./resources/Device.owl#PicoTh03 Indoor"/>
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getTemperature">
<soap:operation
soapAction="http://hydra.eu.com/th03/getTemperature" style="rpc"/>
<input name="thermRequest">
<soap:body use="literal"
namespace="http://hydra.eu.com/"/>
</input>
<output name="thermResponseDouble">
<soap:body use="literal"
namespace="http://hydra.eu.com/"/>
</output>
</operation>
<operation name="getStatus">
<soap:operation
soapAction="http://hydra.eu.com/th03/getStatus" style="rpc"/>
<input name="thermRequestl">
<soap:body use="literal"
namespace="http://hydra.eu.com/" />
</input>
<output name="thermResponseBoolean">
<soap:body use="literal"
namespace="http://hydra.eu.com/"/>
</output>

Version 1.0 Page 73 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

</operation>
</binding>
<service name="THO03Service">
<port name="THO03Service" binding="ns:THO3SOAP">
<soap:address location="http://dmz-
168.daimi.au.dk:8084/th03"/>
</port>
</service>
</definitions>

6.1.3 Describing the service-related statemachine

For the current implementation of state machine stub code generation, a dummy state machine
instance is needed for one type of devices. For example, the thermometer has a dummy generic
state machine as shown in the following figure called Thermometer_sm, and then there is a state
machine instance for every device, for example PicoTh03_indoor_sm.

starting Measuring stopping
.--"'I\.\"jl""ﬂ-\

Figure 39: Dummy state machine

The dummy state machine Thermometer_sm can be added to the state machine ontology as
follows:

Only State instances are used to generate code (and their related doActivity).

<StateMachine rdf:ID="Thermometer Indoor sm">
<hasStates rdf:resource="#ThermometerStopping"/>
<hasStates rdf:resource="#ThermometerStarting"/>
<hasStates rdf:resource="#ThermometerMeauring"/>
</StateMachine>
<Simple rdf:ID="ThermometerMeauring">
<StateName rdf:datatype="&xsd;string">
ThermometerMeauring</StateName>
<doActivity rdf:resource="#getTemperature"/>
</Simple>
<Action rdf:ID="ThermometerStart"/>
<Simple rdf:ID="ThermometerStarting">
<StateName rdf:datatype="&xsd;string">
ThermometerStarting</StateName>
<doActivity rdf:resource="#ThermometerStart"/>
</Simple>
<Action rdf:ID="ThermometerStop"/>
<Simple rdf:ID="ThermometerStopping">
<StateName rdf:datatype="&xsd;string">
ThermometerStopping</StateName>
<doActivity rdf:resource="#ThermometerStop"/>
</Simple>

Version 1.0 Page 74 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
6.1.4 Run the Limbo compiler on the WSDL file
In <limbo>, invoke:
java -jar limbo.jar <arguments> tutorial/wsdl/th03r.wsdl
where <arguments> is on the form "-<argument> <value>". For the tutorial, the argument list is
left empty.
The following arguments are supported:
Option: name Option: Default Meaning
values
. L . Determines which programming language
limbo.language jse, jme jse code is generated for
The target platform. In the osgi case, the
. . standard HTTP service will be used, in the
limbo.platform standalone,osgi ||standalone . .
standalone case, Limbo will generate a
simple HTTP server
Determines whether a skeleton is created
limbo.generationtype||server,client,all |all for a
) ! ! server, a stub is created for a client, or
both
Determines which transport layer protocol
limbo.protocol TCP,UDP,BT TCP will be used: TCP, UDP, or Bluetooth
(RFCOMM)
limbo.loghandler true, false false If_set to true, the generated server code
will log requests
\Iimbo.outputdirectory\\any directory ngnerated HSpeciﬁes where generated code is put \
Per default, Eclipse project resources are created so the generated code may be used as the basis of
a project in Eclipse.
The following files are the most important files that are generated for the thermometer code in the
case a standalone server project:
e THO3PortOpsImpl - A default implementation of the service methods
e LimboMain - A main program that will run the server created
e THO3PortLimboServer - A THO3-specific web server
In the OSGi configuration an Activator is generated instead of a main program (and a Servlet is
created instead of using a LimboServer).
6.1.5 Implement and deploy the device-specific service

The generation created two directories in generated:
e thO3rClient

e thO3rServer

Version 1.0 Page 75 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Each of these contains a project that can be imported in Eclipse. The projects are self-contained and
may be copied to one’s workspace.

The actual device binding is implemented in the com.eu.hydra.limbo. THO3PortOpsImpl class. Here
the getStatus and getTemperature methods are implemented. In the following, just a dummy
implementation is shown:

/**

* getStatus method - returns the current staus of the thermometer.
*

* @param thermometerIdl - ID of the thermometer that status is

required.
*

* (@dreturn the status of the thermometer.
*
*/
public boolean getStatus(String thermometerIdl) {
return true;

}

/**

* getTemperature method - the current temperature measured by the
thermometer.

*

* @param thermometerId - ID of the thermometer that temperature is
requested.

*

* @return the temperature given by the thermometer.
*
*/

public double getTemperature (String thermometerId) {
return -1.0;

}

6.1.6 Running the Generated Code

6.2

To run the server, run the com.eu.hydra.limbo.LimboMain class from Eclipse.

To interact with the server, locate the com.eu.hydra.limbo.client. THO3PortLimboClient class in the
th03rClient project and replace /*Insert method calls here*/ with calls to the thermometer service.
An example would be:

System.out.printin("The temperature is " + theClient.getTemperature("42"));

Thereafter, the THO3PortLimboClient should be run in Eclipse. To change the default behaviour of
the generated server skeleton, change the com.eu.hydra.limbo.THO3PortOpsImpl class as described
above.

Device Ontology

The Device Ontology tools interface is a tool for manipulation of the device ontology via the web. It
can be used by the device developer for defining a new device description or editing an existing
device description. It can be used to browse devices in the ontology as well.

The Device Ontology tools interface can be used as a flexible ontology browser from the point of
view of the device taxonomy. A user can navigate in the device classification (ontology concepts)
and browse the device instances (concrete instance of some ontology concept, e.g.: HTCP3300
phone is an instance of MobilePhone concept). The user can view the instance properties. An
example of the browser view is in Figure below. The device browser enables to navigate through any

Version 1.0 Page 76 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

part of the ontology. It is possible to browse through the hierarchy of sub-concepts of the
HydraDevice concept. For each instance it is possible to browse through all of the instance
properties and related property values. If the property values refer to another instance, the device
browser enables us to recursively traverse through the properties of any connected instance.
Furthermore, once an instance is selected, the browser shows all properties and connected values in
the right part of the page. Using the device browser, it is easy to effectively navigate through all
ontology concepts and the populated instances.

@ Mool Terfes =l0l=
v [t Wew Fiplos Fochmt

[< [e o | e Wi LR prv b e L T a T e dweafron L | B

Ealacnad node: Mot Phione 1 (devicd)
Edit Gernerate Dwlete

= |IMSTANCE: device MabilaPhane_1

Figure 40: The Device Browser tab.

6.2.1 Device Creator

@ Mool lerfes =] E]
s it ew Moy Bocbmwts T

| < P ACIE W T T RO s Tl n 2 e a T n fronalL T

Salactid node: MobdePhone 1 (94vice)
Edit Generate Dalete

= |INETANCE: device MabilaPhane 1

u POOPEDTY |50 Nk J|
B wesie g 1 oA » IRSTAMCE:: sefvice Servicadutput 2
£R i

w INSTARCE

Figure 41: Adding a new instance.

The tool enables a user to create new devices and manually update some of the device properties.
The device creator provides the following functionality:

Manually create new device enables to add the device into a selected device type (adding a new
instance to the selected concept) by filling in the new device properties. See Figure above for the
new device form.

Version 1.0 Page 77 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Upload/Update SCPD (Service Control Point Description) info The device can be created semi
automatically by uploading the specific XML document containing all device relevant information,
including basic device description, specification of services, but also models for events and energy
profile information. The content of XML can be generated automatically by several tools, but can be
extended and further specified also manually. It is also necessary to be aware of the update XML
structure.

Update Discovery info This functionality just simulates the semantic discovery process (normally
performed by the Discovery Managers in the Hydra architecture) and should be used only for
verification purposes. If a user fills-in the text box with the device discovery information formulated
as XML with predefined structure, the tool will perform the semantic discovery matching and create
the device run-time instance in the case of success. The tools supporting the device discovery
process will be described in the next section with more details.

Update (SA)WSDL info This tool enables the user to automatically generate device service models
from WSDL or SAWSDL files (i.e., Semantically Annotated WSDLs). The existing device instance has
to be selected and the URL address, or a local file containing the (SA) WSDL file has to be specified.
Services of the device will be substituted by a service description contained provided in the (SA)
WSDL file. This tool will be described in the next section in more detailed way.

Update Malfunctions, Events and Energy Profile info Various parts of device models can be
updated manually by providing specific XML documents describing the particular models. XML
documents have a prescribed structure. This way, the basic device information, models for
malfunctions, events and energy profiles can be updated. The illustration example of editing
capabilities for the selected device is in Figure below:

@ iy P

L ¢ P

Ealetind “ode. MebiaFhone 1 idevicel

Edt Genwrale Debsbe

—
= IMATARCE - device-WabiisPhans §

e CRLsrvesy i

IHSTAMDL:: tarsice FlawianscrSarvice 1
"
[=] 1 » RETARCE: servica SarviceDuiput T
& PR i
=
-

» INSTARCE

Figure 42: Device editing functionality

Import/Export functions

For the purposes of easy and effective device ontology population and device instances
update/maintenance, various import/export generators were developed. The generators should be
used both by application and device developers. Generators are also used by the ontology manager
web interface. The generators consume device descriptions, from which are generated the related
parts of ontology models, or, ontology models can be used to generate specific descriptive
information. All of the generators are used to create ontology models/descriptions automatically
rather than manually.

(SA)WSDL to ontology generator
A developer may populate the device service ontology with the description of services contained in a
related WSDL file. For a selected device, the WSDL file is parsed and the device instance is extended

Version 1.0 Page 78 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

with the models of services specified in the WSDL file. Each time a new WSDL file is processed by
the generator, the device services are completely replaced by the services in the newly provided
WSDL. A WSDL file can be also semantically annotated using the SAWSDL standard. This
functionality can be particularly useful in order for Device Developers to facilitate Hydra enabling of
a device. In the actual implementation, the following annotations can be used:

Annotations for wsdl:operation element each WSDL operation stands for one specific service
ontology model using sawsdl:modelReference attribute directly in the wsdl:operation element. This
annotation is used to link the operation with the specific service type. Each operation should be
mapped only to one service type.

Extending wsdl operation element with sawsdl:attrExtension annotations: to enable the
annotations of service to various quality properties, such as Quality of Service or security properties,
the sawsdl:attrExtension elements are used. Each of them can map the service to a specified
ontology instance representing the property of service.

Annotation of input/output parameters to ontology instances each input or output parameter
may be annotated to the specific part of the Quality of Service ontology, which represents the
parameter types. Each parameter may be linked to the specific quality, e.g. output parameters can
be annotated to the measurement units. The generator parses the SAWSDL file and generates the
service models exactly as in the case of WSDL processing. Further more, the annotations are used to
create the relations between particular service parts and the annotated ontology concepts or
instances.

Discovery information to ontology generator

For the purposes of discovery process improvement, the developer may use a tool to generate the
device discovery ontology model directly from the discovery information acquired from the device by
one of the discovery managers. The device specific discovery information is parsed and the related
device instance is extended by the ontology model modelling the discovery information. This model
will be used in the semantic discovery process. The device discovery information acquired by a
discovery manager is specified as an XML file, which is parsed by the model generator. Generation
of discovery models should be realised for each device model newly added to the ontology. The
model generator makes it possible to process and update the discovery model in a fast automatic
way.

SPCD to ontology generator

For the purposes of adding or updating the devices model fast, the generic ontology generator
consuming SPCD XML documents, was implemented. The SPCD contains several device relevant
information, such as basic device description and manufacturer information, initial description of
services, but also discovery, events and energy profiles information. The SPCD generator uses the
specific ontology generators mentioned above processing the (SA) WSDL documents, but also
discovery information.

Ontology model to SCPD file generator

Another tool supporting the automatic semantic discovery of devices is the so called SCPD
generator. Each time, when a new device is discovered by some low-level discovery manager, the
discovery information is retrieved from the device and passed to the ontology manager which tries
to process the semantic resolution of the discovered device. This is done by comparing of the
discovery information with the various discovery models in the ontology. If semantic discovery is
successful and a suitable semantic model according to discovery information is found, the ontology
manager returns the description of the identified device and the services, which are provided. This is
done by generating so called SCPD file containing all the mentioned information. The SCPD file is
generated directly from the related device and service models in ontology.

Version 1.0 Page 79 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
6.3 Flamenco
Flamenco is a tool for supporting self-management in Hydra-based systems. In fact, Flamenco is a
way to model the desired behaviour of a device as a Coloured Petri Net (CPN), to track it at runtime
and to emit events for certain state transitions. It currently exists in two versions:
e Flamenco/CPN in which Petri Nets is used as a basis
e Flamenco/SW in which Semantic Web technologies are used as a basis
In the following the users are guided through a simple example of self-management and how to use
Flamenco to realise a scenario of managing a flow meter-based agricultural system. Furthermore, an
explanation is provided on how to make use of Flamenco to choose optimised solutions according to
multiple (conflicting) objectives, for example QoS requirements on memory consumption,
throughput, reliability and so on.
6.3.1 System Requirements and Installation
e Windows XP or Vista (CPN Tools only runs on Windows or Linux)
e Java 5 or later
e CPN Tools. A license and download the tool can be requested from:
http://wiki.daimi.au.dk/cpntools/cpntools.wiki. Version 2.3.5 which is an internal version is
needed. The CPN Tools people or UAAR need to be contacted for instructions on how to
download.
e Access to the Hydra Middleware software
e Eclipse Europa or later for running Flamenco
6.3.2 Design Time Usage

CPN Tools may be used directly to Flamenco/CPN nets. There is a template for such nets available in
HYDRA/sdk/flamenco/flamencocpn/resources/cpn/flamenco-template.cpn. The figure below shows
the result of opening the template:

Version 1.0 Page 80 of 157 30/04/2010

http://wiki.daimi.au.dk/cpntools/cpntools.wiki

Hydra D12.9 - Final External Developers Workshops Teaching Materials
& CPN Tools (Internal version 2.3.5 - August 2007)
»Tool box S
» Help Sim Create
Opti
:fl:n:zzzo—template‘cpn «'."O| N k »Im I:] O K 4]
Step: 0
e | &
»gg]tliaonos x = XL il
» History
¥Declarations
» Standard declarations
vval LOW = 10; Binder.9
¥ colset Topic = string; REHIENED
¥ colset InputMap = recard Binder 0
DevicelD : STRING * AUX
DeviceType: STRING *
Result : STRING * 1, Generate net-specific Flamenco code
State : STRING *
. S;iast:tﬁllc,t\llSS% S:Emi,]ct INPUT gen_FlamencoCPN(2000)
Topic * InputMap;-
¥ colset OutputMap = record 2. Run (open connection, receive events, execute sim steps, send events, etc)
Deviceld : STRING *
Reason : STRING; (* update sim feedback *)
¥ colset OUTPUT = product FlamencoCPN.run(true,0)
Topic * OutputMap;
¥use ((Output.getModelDir())~"/sendSimFeedback.sml"); (* do not update sim feedback *)
vuse ((Output.getModelDir())~"/flamencacpn.sml"); FlamencaCPN run(false,0)
» Maonitars 2 X
Flamenco 3. Generate net-specific Flamenco code and save ML image (optional)
AUX OUTPUT build (9000,05 Path.concat(Qutput.getModelDir(),
“flamenca.ML"))
None
None
|
Figure 43: CPN Tools
6.3.3 The auxiliary page
The right hand side is an auxiliary page that is used to generate specific Standard ML code for a
Flamenco/CPN net. When the net is changed to use it at runtime in Flamenco/CPN, the first
expression needs to be evaluated. Evaluating one of the expressions under "2." will start CPN Tools
and wait for an attachment from the Java part of Flamenco/CPN on port 9000. Depending on which
one you choose, you will be able to see the net being updated or not while Flamenco/CPN runs.
Lastly, the third expression may be evaluated to run Flamenco/CPN entirely without a user interface.
Evaluating the expression will generate a Standard ML image that contains the specific net.
6.3.4 The net
The template net is shown in the middle. It only contains two template places ("Input Events" and
"Output Events"). These places will receive and send events from the Hydra middleware respectively
at runtime. In general there should be one place with the colour INPUT and one place with the
colour OUTPUT.
6.3.5 The declarations
The declarations to the right define the colour of the input and output events and should be
extended as needed.
Runtime Usage
The net for a full Flamenco/CPN example is shown in the figure below:
Version 1.0 Page 81 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Binder 0
| Flamenco
("/statemaching/statechange”,
{DevicelD=id,
INPUT DeviceType=deviceType,
10 Result=result,
1 State=state,
0 StateAction=stateAction})
cl+l
‘‘‘‘‘ —
INT el
(id,valof{Int fromString(result)))
[DxFLOW
(id,value) Jelpslhy fid,value)
Law High Too High
[value<LOW] Flow Flow Flow [value>TOO_HIGH]
[(valus>HIGH) andalsa (
value<TOO_HIGH)]
("/diagnosis/alarm"”,
{Deviceld=id, Reasoh="High Flow"}) |
["/diagnosis/alarm”,) ("fdiagnogis/alarm",
{Deviceld=if, Reasan="Low Flow"}) {Deviceldrid, Reason="Too High Flow"})
¥
=ﬂ\-tput <
Events
\'—‘/OUTPUT
+ Nane

Figure 44: Flamenco

To run Flamenco/CPN, the following steps need to be taken:

e open CPN Tools on a Flamenco/CPN net as described in the previous section and evaluate
the appropriate auxiliary declarations

e run the Hydra Event Manager

e run the Java part of Flamenco/CPN. The easiest way currently is to start Eclipse on the
FlamencoCPN project and then run com.eu.hydra.flamenco.cpn.Flamenco.

e run a number of devices that will produce events

For simulating the last step, the FlamencoTest project can be wused. The class
com.eu.hydra.flamenco. cpn.FlowTester will produce events from the flow meter scenario. If the
CPN Tools are started with user interface updates, the tokens being produced and consumed in the
net will be seen.

6.3.6 Flamenco/SW
System Requirements

Currently the OWL/SWRL based Diagnosis manager is tested on Windows Vista and Java 6, but it
should run on any operating system with Java 5 or later.

Below is the list of tools needed for running it:
e Tomcat 5 or later
e Protege 3.4 build 130 or later

Version 1.0 Page 82 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Installation

Usage

Install Tomcat. Change the HTTP port to 9999, create a directory called 'ontology' under the
directory ‘'webapps', Tomcat can be download from this link (version 5.5):
http://tomcat.apache.org/download-55.cgi

Install Protege. The current SWRL APIs needs to access the ontologies coming with Protege,
therefore, the running of the OWL/SWRL based Diagnosis Manager needs to point to the
Protege installing directory. This is not necessary since protege 3.4 version 500, as the
SWRL related ontologies can be accessed directly through the internet. However this is still
recommended to improve performance for starting the Flamenco. Protege can be
downloaded from this link: http://protege.stanford.edu/download/registered.html

Download the Flamenco/SW. All ontologies are located in \ontodiagnosis\resources
directory.

Copy all ontologies (including rule ontologies) to the newly created 'ontology' directory.
Thus, all the rules and ontologies are ready for use.

Install the testing client.

Flamenco/SW listens to topic of '/statemachine/statechange’, '/flamenco/socketwatch’. Therefore to
get a diagnosis of a system/application/device, events on these topics must be published and of
course there should be a state machine corresponding to a device in oder to be diagnosed. Another
issue is that the Flamenco/SW should be subscribing to the same Event manager as the one that
publishes events, in order to make use of the Network manager and Trust manager functionalities.

The following steps need to be taken:

Version 1.0

Start Tomcat.

Check that the Event manager is running (for the moment it is using EventManager_CNET),
otherwise start the Event manager.

Start Network manager

Change the build file of Flamenco/SW. Only this tag in the build file: <jvmarg value="-
Dprotege.dir=c:/protege/3"/> need to be changed to the Protege installation directory. After
this start the diagnosis manager with ant build. Alternatively, Flamenco/SW can be started
by running as Java application by click on class

Start one of the test clients. In this tutorial the flowmeter client is used: Build it with the ant
build file in order to create a jar file, called Flowmeter.jar. Copy the Flowmeter.jar to
Resource manager lib directory, and then change the config.ini under the lib\configuration
as follows:

osgi.bundles = \
./lib/org.eclipse.equinox.log 1.0.1.R32x v20060717.jar@2:start, \
./lib/org.eclipse.equinox.common 3.2.0.v20060603.jar@2:start, \
../lib/org.eclipse.osgi.services 3.1.100.v20060601.jar@2:start, \
../lib/javax.servlet 2.4.0.v200706061611.jar@3:start, \
./lib/org.eclipse.equinox.http 1.0.2.R32x v20061218.jar@3:start, \
../lib/Flowmeter.jar@4:start
The last line is used to start the flowmeter test client. The client is started by simply running
it as a java application. It can be seen that the client is sending measurements, and when
the event manager publishes the state changes, the diagnosis manager will conduct a
diagnosis based on the changed states, and publish it.

Page 83 of 157 30/04/2010

http://tomcat.apache.org/download-55.cgi
http://protege.stanford.edu/download/registered.html

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0

e The thermometer scenario can be used by the thermometer client. The config.ini needs to
be changed and change Flowmeter.jar to Thermometer.jar (the jar name built from
thermometer client).

One thing to note is that in order to test multiple times using ant build file coming with
Flamenco/SW, Java process may need to be killed with task manager (this problem can be
particularly experienced in windows Vista/XP), remember to leave the one for Tomcat5.5, which is
usually using around 45-50M memory.

Development

There may be two kinds of developers who can utilize the Flamenco/SW diagnosis manager SDK,
knowledge developer, who is responsible for the development of rules and the addition of diagnosis
cases based on the existing ontologies, and Java application developer who make use of the rules
and ontologies for realising the diagnosis.

For knowledge developers, and most probably they are the developers who need use the SW
diagnosis manager SDK:

To use the SW for your own development, the simplest case is to add a device to an existing
system. Please use the ontologies as the starting point.

The first thing needed is to add this device instance to the Device ontology, and then add this device
instance to the HydraSystem concept in the Device ontology, which only needs to add related
diagnosis rule and the device state machine. For example the steps for adding a flow meter to the
Pig system in agriculture domain are:

1. Add the flowmeter device to the Pig system concept in the Device ontology, as shown in the
following figure.

B Device Protégé 34 beta _ (file\DATomcat\webapps\ontology\Device.pprj. OWL / ROF Filles)
Fle EM Posct QAL Besswing Code Tos Widow Hep

V& @ o Fope. HEE 4>

| @ Metsasts Deviceont)

- @ Device

dee

@ Flowmeter (instance of FlowMeter)

ssssss

Figure 45: Device Protégé
2. Add the flowmeter state machine instance to the StateMachine ontology. It is called
"Flowmeter_sm" in our case, if it does not exist.

3. Add the flowmeter state machine instance to the hasStateMachine property of the
"Flowmeter" device.

Page 84 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

4. Add flowmeter diagnosis rule to the DeviceRule ontology, for example, one rule to diagnosis
flowmeter is:

device:FlowMeter(?device) ?
device:hasStateMachine(?device, ?statemachine) ?
statemachine: hasStates(?statemachine, ?state) ?
statemachine:doActivity(?state, ?action) ?
statemachine:actionResult(?action, ?result) ?
statemachine:historicalResult1(?action, ?resultl) ?
statemachine:historicalResult2(?action, ?result2) ?
statemachine:historicalResult3(?action, ?result3) ?
swrlb:add(?temp, ?resultl, ?result2, ?result3) ?
swrlb:divide(?average, ?temp, 3) ?
swrlb:subtract(?diff, ?result, ?average) ?
swrlb:abs(?absdiff, ?diff) ?
swrlb:greaterThan(?absdiff, 6.0)

? sqwrl:select(?device, ?statemachine, ?state, ?action, ?average, ?result, ?diff)

The adding of rules can be facilitated by using the SWRL tab in the Protege tool as shown in the
following figure:

Bl DeviceRule Protégé 3.4 beta (file\D:\Tomcat\webapps\ontology\DeviceRule.pprj, OWL / RDF Files)

-3 X
fle Edt Projct OAL Ressoning Code Tools Window Help
DEE B0 wd < BEE <> <€protégé
| @ Metadata (DeviceRule.ow)) | | OWLClasses | Wl Properties | 4 individuals | = Forms | = SIRL Rules

SWRL Rules

RERRO0

Enabled Name [

Expression

¥ batterrylevel 55 device:MobiePhone(7device) A device:hasHarware(7device, Thardware) A Hardware batteryLevel(Zhardware, level) - sqwrk:select(7device)

[V checkBatery 85 device:MobiePhone(7device) A device:hasHarware(7device, Thardware) A hardware, 7hsttery) A evel(7hattery, 7ievel) - sawrkselect(Zdevice, Zlevel)

[4 checkcPu = device:MobilePhone(device) A device:hasHarware(7device, ?hardware) A Hardware:primaryCPU(Phardware, 7cpu) A (7cpu, Pepuname) A ‘7device, 7soft) A

[¥] checkMalfunctionCase = error-cause(7case, 7cause) A erorremedy(7case, remedy) - sqwrl:select(?case, Zcause, Zremedy)

4 checkMalfunctionCause & (7error, name) A (7error, 7case) A error.cause(7case, 7cause) A error.remedy(7case, Fremecdy) - sqwrl:select(?error, Pname, 7case, 7cause, Zremedy)

[V currentMalfunction = device ig) A Pig, 7device) A (?device, 7mal) - sqwri:select(7device, 7mal)

[V currentStatepig =] ~ , 7device) A device, ~ 7state) A nt(7state, "true”
[V deviceTypeChecking) device Pig) A Pig, 7device) A aboxhasClass(?device, ?class) - sqwrl select(?device, 7class)

¥ FlowmeterDiagnosis & device) A 7device, ~ state, 7action) A action, 7rest...|
[flowmeterToohighPig = device:Flowheter(7device) A 7device, ~ ?state) A clivity(?state, 7action) A statemachine:actionResut(?action, 7rest.
& flowmeterTooow = device:Floweter(7devics) A 2devics, A state) A 2state, 7action) A esut(2action, 7res.
¥ flowmeterToolowPig 5 device:FlowMeter(7device) A device, A 2state) A 7state, 7action) A (Zaction, rest.
& lowBsttery 5 device:MobiePhone(7devics) A device:hasHarware(7device, Zhardware) A hardware, 7bsttery) A evel(7hattery, 7ievel) A swritlessThanOrEcual(7ievel, 0.15) - VeryLc.
networkPower =5 device:MobilePhone(?device) A device:hasHarware(?device, Thardware) A Hardware:supportedNetworkBearers(hardware, Phearers) A Hardware networkPowerUised(Zheaers, Zpower) - sqwrk select(7device, 7
M snifferivolingStatus = device messageSourceP(7messaget, 7int) A ipt, 7ipat) A (rmessaget, 2p0t1) A (7process1, messaget) A device:hasProcessiD(?process?, 7pid1) .
[thermometerDiagnosis & 7device) A device, A ?state) A (?state, 2action) A 7action, 7re.
[V thermometerStatemachine = dev (7device) A (device, o (Pdevice,

4 thermometerTrendDown & 7device) A device, A 7state) A (?state, 7action) A 7action, 7re.
[V thermometer TrendDown_summer = de (7device) A device, A 7state) A tivity(?state, 7action) A (7action, res
M thermometerTrendUp B cevice: Themometer(7eevioe) A device, 9 2stete) A state, 7action) A 2action, Tres.
[V thermometerTrendUp_summer = de (Pdevice) A (7device, n Pstate) A fivity(?state, 7action) A (Paction, 7re.
[vertiatordown_pig = de ; Outoor, A 2state) A 2state, 2action) A (7action, resut) A statem.

< SWRL Rule [E=RIER =X
"Name | Comment.

Hame

——

SWRL Rule
device: FlowMeter(7device) A
(2devi

statemachine: hasStates(?statemachine, 7state) A
statemachine:doActiviy(?state, 7action) A
statemachine:actionResult(?action, resut) A
statemachine:historicalResultl(?action, resutt) A
statemachine:historicaResult2(?action, resut2) A
statemachine historicalResult3(?action, resut3) A
|swrib:add(7temp, resut1, Zresut2, Zresut3) A
swrlb:civide(?average, 2temp, 3) A

(2itf, 7resut, 7average) A
swrlb:abs(?absdiff, 7diff) A
swrlb:greaterThan(?absdiff, 6.0)

~ sqwit select(?device, ?statemachine, 7state, ?action, ?average, Zresut, 7diff)

-0?7013:= (V]
BA= () [1]e

Figure 46: Device Rules Protégé

5. Add diagnosis case to the Malfunction ontology. For example, the "flowToohigh" instance
can be added to the "DeviceError" concept, with the "pipeBroken" as the case for the
"hasCase" property by clicking the "Add new resource" button, and then fill the "pipeBroken™"
by adding "cause" as "pipe broken" and "remedy" as "replace pipe".

Java application developer:

Suppose the rules added by the knowledge developer are only related to one device. Then there is
no need to do anything as the APIs can handle the diagnosis cases.

Version 1.0 Page 85 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

In the case that a developer needs to process a rule, then a key class to use is RuleProcessing in
package com.eu.hydra.flamenco.ruleprocessing. It can be used like this:

RuleProcessing rp=new
RuleProcessing ("http://localhost:9999/ontology/DeviceRule.owl") ;
HashSet<String> set=a.getAllSWRLInferred(); // get all inferred
information, and can get inferred

// individual or property
separately using

//
getSWRLInferredIndividual (), getSWRLInferredProperty().

rp.checkNormalTwoColumnRule ("deviceTypeChecking"); // execute rule called
"deviceTypeChecking"

There are different methods for processing different types of rules: checkSingleColumnRule() which
is used to process a rule returns only one column result but may have multiple rows. Similarly there
are other rules processing methods.

As there may be many rules, but different rules are used for different purpose, therefore, a separate
rule group can be built and executed as needed. The rule group feature can be used like this:

RuleGroupProcessing a=new

RuleGroupProcessing ("http://localhost:9999/ontology/DeviceRule.owl") ;
a.processRuleGroup ("pig"); //create a rule group called "pig"
HashSet<String> set=a.processRuleGroup ("pig"); //This will execute all
rules whose name contains 'Pig'

HashSet<String> setl=a.processRuleGroup ("pig", "battery", "and"); //This
will execute all rules whose name contains 'Pig' and 'battery'.
HashSet<String> set2=a.processRuleGroup ("pig", "battery", "or"); //This
will execute all rules whose name contains 'Pig' or 'battery.

Now the rule grouping feature can be used to diagnosis as followed:

DiagnosisInitializingData.getDiagnosisInitializingDataInstance ()

DiagnosisInitiation pig=DiagnosisInitiation.getPigRuleInstance ()
//prepare for infered result parsing as a observer to InferredResult
InferredResultParsing

parser=InferredResultParsing.getInferredResultParsingInstance () ;
InferredResult result=InferredResult.getInferredResultInstance();

result.addObserver (parser) ;

pig.Diagnosis ("pig");

pig.Diagnosis ("ventilator");

pig.Diagnosis ("flowmeter") ;

Planning in Flamenco

Flamenco is adopting a 3Layered self-management approach in which there is layer responsible for
planning. The planning layer is using Genetic Algorithms (GAs) to find optimised solutions for a
problem, based on the JMetal GA framework. Currently the planning layer supports three GAs,
NSGA-II, FastGPA or MOCell.

Usage

The planning layer is part of the Flamenco, but can be used separately also. There are some existing
applications (e.g. self-adaption which reads component QoS properties from file, and self-protection
which reads QoS properties for security protocols from security ontologies). Here the self-adaption
example is used to illustrate how to run the planning layer. From the tests/evaluations, it was
concluded that NSGA-II is the best GA for self-management problem, in which usually, the NSGA-II
genetic algorithm will find a number of optimised solutions, and its corresponding variables.

Version 1.0 Page 86 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Development

The overall architecture of the planning layer is shown in the following figure:

I = Operations

4 tevaluate void

Lo seffiManagemenitProbiem

«“creates
% +SelfanagementProblem

4 +evaluateConstraints: void

Problem

Lo selfConfigurationProblem
- = Operations

% +evaluate:void

% +evaluateConstraints vaoid

- = Attribute:

Lg selfadaptationTransportationProblem

10.

L& selfProtectionProblem
- Bl Attribute:

 -violated boolsan
- B Operation:

& +SelfFrotectionProblem
% +setObiective_Memory double

“creates

% +zet0biective CPU:double
4 +evaluate void

4 +evaluatememary float

% +evaluateduthenticity : float

L& GAEngine
- = Operations

% +getCrossOverProbability :doubl
% +initalize vaid

% +initiateGa void

% +getExecutionTime long

% +getSolutionSet:SolutionSet

- = Properties ————
¥=-ohjectives:double[1[]

& +getPopulation:int

¥=-decisionvars:Siring[]

*

4 tevaliatePowerCone antion fnat =
a.* 1
L& GASelfProtection
L& SecurityProtocol = atributeg—————— |
- = Operations ¢ -objectives:double
wrreates & -decisionYars :Strin
& +SecurityProtocol ¢ resultiHashMap<String String=

I = Qper atior:

& MAXIMUM_Memory :double
@ MaXIMUK_Power :double

& -securitydata Vector<Secur ityProtocol >

< +SelfadaptationTransportationProblerm
% +setObijective_Mernory :double

wrreates

% +set0biective_CPU:double

% +evaluate:void

% tevaluateMemory:float

& +evaluatesuthenticity :float

% +evaluatePowerConsumption:float
% +evaluateConstraints vaid

L& InitializeselfAdaptationT...
Bl Attributes

& -parameteryector Mector <Trar
I =l Operations
4 +main:void

 -instance:InitializeSelfAdaptatic

I = Properties
I=-memory Float
¥=-powar Float

I=-authenticity:Float | 0..*

& gel

% +rmnain;:void

1

L& InitializeSelfProtection
I B Operations
«wcreates
% -InitializeSelfProtection
% +InitializeSecurityFromOntolog

¢ ga.GAENgine
:SelfProtectionProblem
= Operations ——

% +getSecuritData:Vector <Secy f

L4 Transp

- B atributes

ortConnection

evaluations
B Classes ——M8
L& ReadHy_mMoCell

Lg BuildParetoFront

Lg BuildParetoFront_MOCell
L¢ ReadProblem

Lg ReadPerformance_FastPGa
L& ReadHyY_Random

Lg ReadPerfor mance_NSGAII
Lg SelfProtectionEvaluation

L& BuildParetoFront_FastPGa
Lg ReadHy_FastPGa

L& RandomSearch_Evaluation
[ReadHy_NSGAT

L¢ ReadPerformance_MOCell
L& ReadPerformance_Random
Lg SelfConfiguration_MCOCell
L& selfCanfiguration_NSGAIL
Lg SelfConProblem

L& GAEngineEvaluation

¢ -rtt:Float
- Operations
“creates
% +TransportConnection
- B Properties

«createn
% -InitializeSelfAdaptationTranspd
% HnitializeSecurityFromCntolog

4 +getTransportationData:vector i

i=-goodput:Float

Figure 47: Flamenco Planning Layer

Chromosome encoding and fitness evaluations

The representation of chromosome in this case is using integer (starting from 0). That is to say, an
integer vector V =[V 1; V 2; :::Vi; :::; V n] (where n is the number of decision variables, and in our
case, it is 10) is used to represent a solution. V i is a natural number, acts as a pointer to the
sequence of the concrete implementation of the ith services. For example, a chromosome
[0,1,3,3,2,0,1,1,2,3] represents that a solution chooses the first implementation of service number
1, chooses the second implementation of service number 2, chooses the fourth implementation of
service number 3, and so on. In this case, it chooses AxisSENM, AxisMECM, LimboMEDM, and so on.
Based on the chosen components, the GAs then decide its fitness using the objective equation, and
will evaluate whether the constraints are meet at the same time.

Define optimisation problem

A number of steps are needed to abstract an optimization problem:

Version 1.0

Page 87 of 157

30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

1. Define the problem class (e.g. SelfConfigurationProblem), which should extend the
SelfManagement Problem, which extends JMetal:Problem interface.

2. Define the methods for evaluating fitness of a solution, which is defined also in SelfConfiguration
Problem class.

3. Define the methods for evaluating constrains of the problem in the SelfConfigurationProblem
class.

4. Define another class TestSelfConfig, which is the entry point for initiating the GAEngine, choosing
either NSGA-II, FastGPA or MOCell, to operate on the defined problem, and then the solutions and
their corresponding values for decision variables (i.e., the number of a concrete components) can be
obtained.

6.4 Device Discovery Manager

The Device Discovery Manager is used to detect devices in the Hdyra network and collect
information about its functionalities and how this functionalities can be addressed by application and
other devices. It also makes use of descriptions of devices and the Ontology Framework.

DDK Class library for .NET

A part of the Hydra DDK is a .net based class library available for device developers and device
manufacturers. The DDK documentation is divided into 4 parts: Device Service Managers, Discovery
Managers, Hydra Device Manager, Device Device Managers.

6.3.4.1 Device Service Managers
This documents the different device service managers that exist and can be used to create a Hydra
Device for interfacing with for instance Bluetooth devices.

6.3.4.2 Hydra Device Manager

A Device Service Manager and a Device Device Manager is needed to create a Hydra Device. The
Hydra Device Manager is the base class for all Device Managers in Hydra. A device developer can
inherited from this class for creating their own device manager.

6.3.4.3 Device Device Manager
This is the documentation of a number of already existing device managers that a developer can
choose from or make use of to derive own functionality:

WeatherSensorDevice::AirPressureDevice
BasicPhoneDevice::BasicPhoneDevice
SwitchDevice::BasicSwitchDevice

Hydra::BlindDevice
BlueToothDevice::BlueToothDevice
SwitchDevice::EnhancedSwitchDevice
SwitchDevice::ExternalSwitchDevice
Hydra::GPSDevice
Hydra::MediaRendererDevice
Hydra::MedicalDevice
WeatherSensorDevice::RainSensorDevice
RFIDTagDevice::RFIDTagDevice
RemoteUPnPDevice::RemoteUPnPDevice
RemoteWSDevice::RemoteWSDevice
RFIDTagDevice::RFIDTagDevice
SmartPhoneDevice::SmartPhoneDevice
WeatherSensorDevice::ThermometerDevice
WeatherSensorDevice::WeatherSensorDevice
WeatherSensorDevice::WindmeterDevice
Hydra::ZigBeeCoordinatorDevice
Hydra::ZigBeeEndDevice

Version 1.0 Page 88 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

6.5

6.3.4.4 Discovery Managers

A device developer creating his own Hydra Device might also need to provide a specific Hydra
Discovery Manager to allow the device to be discovered in a Hydra network. This part of the
documentation describes the existing discovery managers in Hydra which can be used directly by a

device developer or specialised for his own device type.

BluetoothDiscoveryManager
DiscoveryManager::DiscoveryManager
ExternalBlindDiscoveryManager
ExternalDiscoveryManager
GPSDiscoveryManager
RFIDDiscoveryManager
SerialPortDiscoveryManager

TellstickDiscoveryManager
UPnPDiscoveryManager

WSDiscoveryManager

ZigBeeDiscoveryManager

Hydra-Enabling a Device

This is a brief step-by-step description on how to Hydra-enabling a device using the .Net framework
and Visual Studio by Microsoft. (see chapter 8 for additional information about Hydra and .Net and
chapter 10 for links to the Hydra websites)

Step 1
Create Visual Studio Project

New Project

Project types:

Templates:

=~ Visual C#

Windows

. NET Framework 3.0
-- Smart Device
Database

: - Starter Kits

Workflow
- Other Languages
[+ Other Project Types

Visual Studio installed templates
& Windows Contral Library
3 Console Application
= Empty Project
My Templates

) Search Online Templates...

{58 Class Library

&#Web Cantrol Library
l:E‘-"."inclows Service
;E]Cr}rstal Reports Application

A project for creating an application with a Windows user interface

Name:
Location:

Solution Name:

HydraHomeAutomation
Ch\Users\peterros. CMETNG\Documents\Visual 5tudio 2005\ Projects

HydraHomeAutemation Create directory for solution

- Browsze...

[o

|| cance |

Step 2

Version 1.0

Figure 48: Create Visual Project

Page 89 of 157

30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Open C#-code file by clicking the "Solution Explorer Tab” and then “Right-click program.cs” and
selecting "View Code”

L —
7 HydraHomeAutomation - Nicrosof VisualStucio W 11 T T e
— e —
| Hle Edt View Refactor Project Buld Debug Dats Tools Window Community Help
F-a-Fdd s G- b Debug - AnyCRU < | 4 NetworkManzger gEFHAEO-.
Bhalbe =20 &5
3¢ Solution Explorer - Solution HydraHomeA... = & X Program.cs| Formi.cs Design] | Start Page | Object Browiser v X ||Propetties + 1 X
JBEAEA #8HydraHomeAutomation Program ! 39 Maing -
Z | (] souten Hydrabometutomation (projct Dlhsing Sysvem; = [E|
= (5 HydraHomeAutomation \-Asing System.Collections.Generic: i
4 Properties using System.Windows.Forms;
@ References
= Forml.cs [Dnamespace HydraHomeRutomation
] Program.cs (
static class Program
(
pplicat:
ableVisualStyles():
tCompatibleTextRenderingDefault (false);
n(new Forml());

‘ i b
Find Symbol Results

1x
(7 Class View |53 Solution Explorer
Error List Ix
0 Wamings | (i) 0 Messages
Description File Line Column Project
Find Results1 1x
Ready Lnl Coll Chl 3

Figure 49: Visual Studio — editing file

Step 3

Add Web References for a Device

Right-click "References and select :

"Add Service Reference”/”Advanced”/"Add Web Reference”

to get to the form.

URLs to be used for testing

DiscoBall: http://212.214.80.161:8080/3/BasicSwitchWS
Fan: http://212.214.80.161:8080/4/BasicSwitchWS

Light: http://212.214.80.161:8080/2/EnhancedSwitchWS
Thermometer: http://212.214.80.161:8080/ThermometerWs
Windmeter: http://212.214.80.161:8080/WindmeterWs
Treno: http://212.214.80.161:8080/7/BasicSwitchWS

Version 1.0 Page 90 of 157 30/04/2010

../s
http://212.214.80.161:8080/3/BasicSwitchWS
http://212.214.80.161:8080/4/BasicSwitchWS
http://212.214.80.161:8080/2/EnhancedSwitchWS
http://212.214.80.161:8080/ThermometerWS
http://212.214.80.161:8080/WindmeterWS
http://212.214.80.161:8080/7/BasicSwitchWS

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Add Web Reference (B f]

Mavigate to a web service URL and click Add Reference to add all the available services.
ERA

URL: | hitp://212.214.80.161:8080/3/BasicSwitchW9| ~ H6Go

« | Web services found at this URL:
Start Browsing for Web Services R
Use this page as a starting point to find Web services. You can dick the links below, or type a known URL into the address bar.

Browse to:
= Web services in this solution

= Web services on the local machine

= Browse UDDI Servers on the local network -
Query your local network for UDDI servers,

Add Reference

= Cancel

Figure 50: Visual Studio (WebServices)

Step 4
Overview of solution approach
e Connecting to NM to get a HID for the Application Device Manager
e Use the AppDevMgr to find HIDs for devices
o Create WS clients for the devices
e Create Event Listener
e Register Event Listener with Event Manager

e Inside the Event Listener implement the logic to turn on and off devices depending on
events.

e Test and Debug.

Step 5
Use NM status page to view NM contents
Connect to a Network Manager:

NetworkManager.NetworkManagerApplicationService nm = new
NetworkManager.NetworkManagerApplicationService () ;

Step 6
Find the HID for an ApplicationDeviceManager

Version 1.0 Page 91 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Use the HID to create an endpoint for a SOAPTunnel;

ApplicationDeviceManager.ApplicationDeviceManager myAppDevMgr = new
torinotest.ApplicationDeviceManager.ApplicationDeviceManager () ;

string AppDevMgrHID =
nm.getHIDsbyDescriptionAsString ("ApplicationDeviceManager:BLONDIE:StaticWs
")

myAppDevMgr.Url = "http://10.38.101.30:8082/SOAPTunneling/0/" +
AppDevMgrHID + "/0/hola";

Step 7
Use graphical DAC browser to find WSDL-file for device or endpoint.
Import and create WS clients in your program for device.

Use Application Device Manager to find the HIDs for the device (example PetersLight).

string discohid=myAppDevMgr.GetHID("", "PetersLight") ;

Step 8
Test your interface with the device

Light. BasicSwitchWS db = new Light BasicSwitchWS() ;
db.url="http://10.38.101.30:8082/SOAPTunneling/0/" + 1lightHID+ "/0/hola”
db.TurnOn () ;

Step 9
o Create Event Listener
e Create Event Manager interface
e Create Network Manager Interface
e Create a HID for your event listener

e Subscribe to the event types you want to listen to

EventManagerService em = new EventManagerService();

NetworkManagerApplicationService nm = new
NetworkManagerApplicationService();

string myhid = nm.createHIDwDesc ("PhidgetEventStack", addresse);

em.subscribeWithHID ("phidgetsensor/79285/ValueChanged", myhid) ;

Step 10
e Start listening to events

e Processing incoming events, be sure to check the status of the device before turning on.

Version 1.0 Page 92 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

PhidgetEventHandler.notifyResponse
EventSubscriber.notify (PhidgetEventHandler.notify request)
{...
else if (request.@event[l].value == "Light sensor")
{
Light. BasicSwitchWS db = new Light. BasicSwitchWS ();
bool on = (db.GetSwitchStatus () .ToLower () == "on");
if (System.Convert.ToInt32 (request.@event[2].value) <
200)
{
if ('on)
db.TurnOn () ;
}
else 1if (on)
{
db.TurnOff () ;
}
-}
Step 11
e Build Application
EJEE A mmm————————————= —
i - | ‘;; _;“.l mm: ;;WJ.: Eusl Bu-ldw!w-wm : - Fﬁm-:“ ’ # NetworkManager. FFBRED-y | :%:
e = a5a]
5 SO B e e Chean Selution Start Page | Object Browser | - x | [Pisgate ax
o PEEa (] Build Hydraomesutomation Shifi-F6 | e gl - -
frscomant Tarnon) = (|
Mm%mmmm wemom s
e R — T T
m " Cles View |45 Sckution Explorer |
e @t] o -
oeen s e P
—I_—
— Dr:u
‘: Cuesealla it Bl el L el i BT 2 & s b TEGEE .3 :u‘ﬁu o
Figure 51: Build application
Step 13
Version 1.0 Page 93 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

If needed for debugging: add a break point and start the execution

P— . - —-— E=RL=! g
% HydraHomeAutomation - Microsoft Visual Studio b d . i
Eile Edit View Refactor Project Build Debug Data Tools Window Community Help
A-iE-EH @ % B 9 - - & b Debug + Any CPU - | # NetworkManager. S EERRE
T % b s =E2|@ 1B &85 W
| »¢ Selution Explorer -+ & X || - Program.cs| Formil.cs [Design] | Start Page | Object Browser | v x ||l & X
I é‘ éj [E-'l -ﬁgHydraHomeAutﬂmationProgram v 59%Maing hd M
g [5A Solution 'HydraHomeAut 5 /] <summarvs
| 8- @ HydraHomeAutomati / The main entry point for the application. o
i~ [=d Properties - / </summary>
l»di References [5TAThread]
- [Web References = static void Main()
H W DiscoBall { L
‘j Fan Zpplication.EnableVisualStyles() 1
. ‘j Light Lpplication.SetCompatibleTextRenderingDefault (false);
‘5 Thermometer Application.Run(new Forml(});
- @ Windmeter
app.config @
E Forml.cs Fan.BasicSwitchWS myFan = new Fan.BasicSwitchWS():
?E‘ b i Light.EnhancedSwitchW5 myLight = new Light.EnhancedSwitchW5();
=l Frogram.cs DiscoBall.BasicSwicchWs myDiscoBall = new DiscoBall.BasicSwitchis():
Windmeter.WindmeterWs myWindMeter = new Windmeter.WindmeterWs():
string myTemp = myThermometer.GetIndoorTemperature () ://get temperature fr
SF {Suatam Convart TaTnt %2 imuTemni S 201 i
o« I | r
Find Symbol Results -1 x
< 1 3
m(lass\ﬁawl@hlution Ex...
Error List >~ 1 x
D 0Errors| | 1\ 0 Warnings| (i) 0 Messages
Description File Line Column Project
Find Results 1 >~ 1 x
-
< +
Ready Ln27 Col13 Ch13 INS
=

Figure 52: Adding breakpoint

Hint: Close the Form that pops up when application starts, to allow execution to reach the
breakpoint.

Version 1.0 Page 94 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

7.1

7.1.1

7.1.2

Integrated Development Environment - Java

This section provides tutorials on how to use each component of the Java (Eclipse) IDE, including a
general introduction to the whole IDE itself (where to find views etc).

Network Manager IDE

IDE connection

Using the NetworkManager for connecting the Hydra IDE to the middleware instance provides the
benefit of being able to access every Hydra device that is present in the global Hydra P2P network —
even those which were not accessible over plain TCP connections, for example because they are
located behind firewall restricting access to TCP sockets from the outside. There are also no special
security concerns about this connection as the communication is protected by the standard Inside
Hydra security mechanisms and accesses to the managers are controlled by the policy framework.

However, when accessing a Hydra device over the NetworkManager, a developer can only make use
of the functionality which the managers provide to the Hydra network. In many cases this is not
sufficient, especially when it comes to configuring the security or internal settings of the managers.
For example, a common task for a developer would be to modify access control policies. As the
developer’s own access to the policy framework would be controlled by the policies, modifying the
very policy set that grants him access runs the risk of unintentionally locking out the developer from
Hydra devices and the policy administration service itself. So, an alternative way of accessing
managers directly at OSGi layer is required in some cases.

For this purpose we provide the possibility to connect the Hydra IDE to the middleware over R-OSGi
connections. After starting the IDE, application developers can choose which type of connection they
prefer using the eclipse dialog box under Window ! Preferences ! Hydra Middleware ! Connection. In
either case, they have to provide the address of the middleware instance to which a connection
should be established — either as a HID when using the NetworkManager or as a URL when using R-
OSGi.

Remote connection

The remote connection feature enables the Hydra IDE to develop software for Hydra middleware
without having a Hydra installation running locally while connecting to a remote working Hydra
installation. This allows the developer to run Hydra user applications on a device without having
Hydra middleware installed or running on it.

In order to configure the connection to the Hydra middleware in Eclipse, the developer has to select
in the file menu Window -> Preferences and from there select Hydra Middleware -> Connection
page (as seen in Figure 53 below).

Version 1.0 Page 95 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

B Preferences

\ type filter te | Connection =0 v
G |
[i+f! Aetnera You have to tell Eclipse where your Hydra installation is. If you have a local Hydra
‘{-’ A o installation, you should configure both "Socket" connection and the "local path®. If you
[+ Communications are using a remote installation you can omit “local path" but some functions might not
[+ Help be available.
(= Hydra Middleware Socket connection
() Mo socket connection

#- Install{Update
e up () Connect via R-0SGi
[+ Java
- PHPeclipse (O Connect via the Hydra NetworkManager
[+ Plug-in Development Neti N g ‘ |
[+ Run/Debug :
[#- Tasks SErnarnt \ |
[+ Team DRt ‘ |
[+ TrustManager v >
[+ Usage Data Collector URL of Hydra framework to connect: | r-osgi:/flocalhost:9278 I

Yalidation L HOdrs Middleware It [locathos |
XML :

Local path of Hydra framework:

A’| Browse... |

[Restore Defaults] [Apply]

® I OK l[Cancel]

Figure 53: Hydra Middleware Connection configuration page

Once the remote connection has been configured, the remote connection can be established and
discarded by pushing the remarked button of the Hydra IDE toolbar as seen in Figure 54.

B Resource - The Hydra IDE
File Edit Mavigate Search Project Hydra Run Window Help

ai Q- BB
=2 | [Resource ‘

Figure 54: Remote connection button

The remote connection only works if both HydraMiddlewareAPI and HydraMiddlewareClients bundles
are running in the system. When connecting remotely, a set of functions provided by the
GlobalHydra IDEUtils class included at the package com.eu.hydra.main.global of the Hydra IDE
bundle are used. This class provides the following functions to ease the remote connection,
irrespective of the way used to establish the connection:
« connectToRemoteHydra(): this function connects to a remote Hydra instance. The
configuration preferences are taken from the preferences page, as already seen.

Version 1.0 Page 96 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
 getRemoteOSGiService(String serviceName): this function provides an object which will
be the instance of the required service. A developer can use this function in order to get an
instance of the service for using it. The returned object must be cast in order to be
compliant with the suitable interface.

The Hydra IDE provides to means for remotely connect to a Hydra installation: R-OSGi and the
Hydra NetworkManager.
7.1.3 Hydra Status and Configuration views

Another important feature of the Hydra IDE is the possibility of controlling the status and the
configuration of the Hydra Middleware (the Hydra managers) within the same Hydra IDE. A set of
views have been deployed in order to provide information about the Network and Event manager
status, so as to be a way of configuring the different managers adapted to the common
configuration system.

In particular, and referring to the Network Manager, the Network Manager UI bundle (from the SVN
at the /trunk/ide/eclipse folder) provides these views. This bundle must be run along with the Hydra
IDE bundle.

Then, when deploying these views, the developer has to go to Window -> Show view -> Other... in
the menu and then select Hydra Status and Configuration. Afterwards, the developer has access to
the view.

The Network Manager Status view provides information about the Network Managers and other HID
instances running in the Hydra network. It provides the same information as the Network Manager
section of the HydraStatus page accessible via the web browser, providing an HID, description, IP
and endpoint of all located hydra devices. The developer can select between showing the Network
Managers, the local HIDs (local Network Manager included) or the remote HIDs (remote Network
Managers included).

The view also provides a dynamic search system by typing on a text box, along with the possibility
of copying the information from the data table by right-clicking over the information of interest.
A screenshot of the Network Manager Status view can be seen in Figure 55 below.

Version 1.0 Page 97 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

& TrustManager 1 Event Manager Skatus 1 Metwork: Manager Status £5 = Hydra Configurator o
/f‘ @ Search:
Show local HIDs
HID Descripkion P Endpoint
120.120,120.120 MetworkManager: sdrian

Metwork managers shown,

Figure 55: Network manager status views

Then, the Event Manager Status view provides information about all subscriptions managed by the
local Event Manager in a similar way as is done in the Event Manager section of the HydraStatus
page. It provides information about the topic, endpoint, date and counter of all subscribed events on
a table, in a similar way as the Network Manager Status view does.

It also provides the same dynamic search system and the same data copying system as the Network
Manager Status view does. A screenshot of this view can be seen in Figure 56 below.

Version 1.0 Page 98 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

o TrustManager T Event Manager Status &3 1 Metwork: Manager Skatus | Hydra Configuratar ==
Search:

Topic Endpoint Drate Cou, .,

itrizcbo http:/f192.168.1.31 1970110 15:24

indos http:/f192,168.1.18 19/01)10 15:24

E'vent subscriptions shown,

Figure 56: Event Manager Status view

The Hydra Configurator view provides a way of configuring the different Hydra managers previously
adapted to the common configuration system. Using this view it is possible to modify the
configuration of a manager in a dynamic way, being the case that these modifications are effective
from the moment they are sent to the system.

The Hydra Configurator view interface consists of a set of deployable bars, one used to apply all the
changes performed during the configuration process, the others devoted to the different managers
adapted to the common configuration system. Once deployed, the list of configurable properties and
options is shown, being possible to modify their values, written inside textboxes. A screenshot of the
Hydra Configurator view can be seen in the following Figure.

Version 1.0 Page 99 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

& TrustManager 1 Event Manager Skatus 1 Metwork: Manager Status o Hydra Configurator &5 o

b

Apply changes

Ipdate changes

[com.eu.hydra.network

Lo

bl

com.eu.hydra.eventmanager

EventManager. CertificateReference | 0291cc46-2821-44fa-9652-9l::a
EventManager . MebworkManagerAddress _h_I:tp_:_,l'_,l'IDce_lll'!u_:-s_!::ﬁil_Zl_E_EE,l'a_x!s!l'_s_ery__.
EventManager.PID | EventManager: '
EventManager . usehletwaorkiManager | I:_r_ue
EventManager.usehetworkManagerDSGi | I:_r_ue

service.pid | com.eu.bvdra.eventmanager

com.eu.hydra.security.core

L

Figure 57: Hydra Configurator view

7.2 Trust Manager IDE

The Hydra TrustManager is responsible for evaluating the trust value of certificates, as they are sent
by Hydra devices upon establishment of a communication session, for example. The trust value
reflects how much the TrustManager (or the developer who configured it) relies on the authenticity
of the cryptographic key contained in the certificate. A trust value of zero means that there is no
evidence that a certain cryptographic key does actually belong to the device claimed in the
certificate’s attributes. As a consequence, one cannot be sure with whom communication is taking
place — if such an untrusted key is used, communication might be protected against eavesdropping
but by no means can it be assured that one is not communicating with the attacker himself. So,
certificates with a trust level under a certain threshold (which can be configured by the developer)
must be considered as insecure.

The TrustManager GUI is a user interface to the TrustManager which is integrated into the general
Hydra IDE, based on the Eclipse RCP framework. It connects to the TrustManager and provides an
interface for controlling some of its features. By opening the TrustManager preferences dialog, a
developer is able to configure the connection from the TrustManager GUI to the actual manager.
After the connection settings have been made, the developer can open the TrustManager
perspective, thereby opening a list of supported trust models on the left of the screen and an editor
for the respective trust model on the right. As the TrustManager provides a plug-in mechanism and
loads any supported trust model at run time, the trust model list on the left is populated the first
time the perspective is opened. Each trust model comes with its own administration service (for
which access rules can be seperately configured) and with thus also with its own user interface. At
the moment, user interfaces have been implemented for the (trivial) Null trust model and the most-
used X509v3 model.

Version 1.0 Page 100 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

At first, after opening the Trustmanager perspective, developers can view the list of trust
certificates, i.e. the list of all certificates which represent a Certification Authority or which are
explicitly marked as “trusted”. For each of these certificates, details about its content can be
retrieved, including the cryptographic public key and the list of attributes which have been created
using the NetworkManager’s createCryptoHID()-method (c.f.Figure 58). If a certificate is not trust
edanymore it can be deleted by using the context menu in the certificate list. The next tab of this
editor enables the uploading of certificates which should be marked as trusted. The TrustManager
accepts certificates in standard PKCS#12 format (i.e. .cer files), displays their content and adds the
respective certificate to the list of “root of trusts”, i.e. the certificate itself and all public keys which
have been signed with that certificate are considered to be trusted from now on (c.f. Figure 59). The
third tab of the editor can be used by developers in order to test which result the TrustManager
would generate for a certain certificate. By uploading a certificate file — again in PKCS#12 format —
into the TrustManager and clicking on the Validate button, the validation process is started and the
trust value for the uploaded certificate is evaluated. In the screen shot in Figure 60 a trust value of

1.0 is returned, which means that the tested certificate is fully trusted and Hydra devices using keys
signed with this certificate are accepted for communication.

=
Fle Edit Mavigate Search Project Hydra Window Help

[mal Mo Talal e o

[T | # TrustManager [Resource

& TrustManager =0 _‘ X502 Trust Model £3 =8

Er-lull‘rrusﬂ'dodel
|| OpenPGRTrustMods!
| 4% X 509TrustMode|

r Currrent Trust Anchors
Trust Anchors

emium-server @thawte.com, CN=Thawte Premium Server CA, OU=Certification Services Division, O=Thawte Consulting cc,

Refresh |

[Current Selection

[
[

Version: V3

Subject: EMAILADDRESS=premium-server @thawte.com, CN=Thawte Premium Server CA, OU=Certification Services Division, C=Thawte
Consulting cc, L=Cape Town, ST=\estern Cape, C=Z4

Signature Algorithm: MD5withRSA, OID = 1,2.840,113549,1,1.4

|»

Key: Sun RSA public key, 1024 bits
modulus:
1476157,

259181415635428561325342020669051439139433844527551020558415419302 18674411196 795408472220886326 7507
37158868295934052463668 237440 20096 367737420 196 3887579795 348848 26507348680 36331360260 559337468 576998
1076933929135333510644167939924459745 12528 32640 575543438433757466 2315063

public exponent: 65537

Validity: [From: Thu Aug 01 02:00:00 CEST 1936, bz

To: Fri Jan 01 00:59:59 CET 2021]

Issuer: EMAILADDRESS =premium-server @thawte.com, CN=Thawte Premium Server CA, OU=Certification Services Division, O=Thawte
Consulting cc, L=Cape Town, ST=\Vestern Cape, C=IA

SeriglMumber; [01]

Certificate Extensions: 1

[1]: Objectld: 2,5.29.19 Criticality=true
BasicConstraints: [

Chitrue

Trust Anchnrs] New Trust Anchor ‘ Validate Certificate |
[Faiz || emofrem @
Figure 58: TrustManager GUI showing the details of a X509v3 certificate

Version 1.0 Page 101 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

I TrustManager - X509 Trust Model - The Hydra IDE

|+

|o%| MullTrustiModel
[52] OperPGPTrustMode!

New Trust Anchar

I TrustManager - X509 Trust Model - The Hydra IDE

[%]
[&]openperTrustvodel

Validate Certificate

Figure 60: Validating a certificate using the TrustManager GUI (Trust Manager IDE)

Version 1.0 Page 102 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

7.3 Crypto Manager IDE
Crypto Manager GUI

The CryptoManager is a stand-alone manager providing various cryptographic operations such as
encryption, key management and handling of digital signatures. It is basically used in two ways: On
the one hand, the CryptoManager is automatically used by internal part of the Hydra middleware —
such as the security modules in the NetworkManager. On the other hand, the CryptoManager can be
used by application developers as a tool for applying cryptographic operations and managing keys.
The idea of the CryptoManager is to abstract away cryptographic keys and algorithms. Developers
using the CryptoManager only need to specify an “identifier” along with the message format. The
CryptoManager will then take care of selecting appropriate keys and algorithms. So, the
CryptoManager facilitates writing secure applications by encapsulating complex cryptographic
operations in an easy-to-use interface.

The GUI for the CryptoManager supports application developers to manage keys stored inside the
CryptoManager. The basic view shows a list of all stored keys providing details such as the
corresponding identifier and the key type (see Figure 61). Basic operations are key deletion and list
refresh (buttons on top of the list). A double-click on one of the RSA certificates opens a message
box which presents the certificate details.

Apart from managing existing keys the CryptoManager GUI makes it possible to invoke the
generation of new keys. The two buttons “Generate Symmetric Key” and “Generate Certificate”
trigger the CryptoManager connected to the IDE to start a key generation. The “Generate Symmetric
Key” button starts key generation immediately and presents the identifier of the new AES key as
result.

The “Generate Certificate” button opens a dialog which makes it possible to specify certificate
attributes and as optional a HID (see Figure 62). After finishing the wizard, the CryptoManager
generates a new RSA certificate and the wizard presents a message box with the identifier of the
new certificate.

Version 1.0 Page 103 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

CryptoManager - The Hydra IDE =[] [%
File Edit Navigate Search Project Hydra Window Help
ey
12 \ G CryptoManager‘ [Resource
2 CryptoManagerView‘ i) =58

Generate Symmetric Key Generate Certificate % 5
[# [256f054a-dad2-4add-81bd-ee5cd96a5a0a, AES]
[%] [264c25ad-bd71-499d-90ae-ceb0f2cc0dc0, AES]
[%2] [33e8a023-685d-4dfc-8e85-44b0d39b6f8d, AES]
[49299beb-7ed0-4b65-a03d-8a5d620a5891, RSA]
B3 [hydrademo-rsa, RSA]

\

Figure 61: CryptoManager View

Version 1.0 Page 104 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

=k
Attributes for Certificate Ld
Key Value _
test testvalue ‘ ‘
Certificate Attributes
HID
@:l Cancel Finish

Figure 62: Certificate generation wizard

7.4 Context Manager IDE

The Context Manager IDE components provide the functionality for creating Context Specification
objects, that can be sent to the Context Manager, as described in the SDK section for the Context
Manager 5.7.1. It also provides views for runtime management of Context Managers, for retrieval of
installed context specifications etc. As well as Context Specifications, the IDE also supports the
creation of named Context Queries that can be stored in the Context Manager, and called by name
at runtime.

7.4.1 Context Specifications

As described in D12.8, Context Specifications can represent three different types of context -
Application, Device and Semantic, where Semantic contexts can also be broken down into different
types - Location, Environment and Entity. When creating a new Context Specification, the exact type
can be specified, along with the name of the context - the confextld. New contexts can be created
in the same manner as adding any other object in a project:

New -> Other -> Hydra -> Context Specification

Version 1.0 Page 105 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

£ . ==

Context Specification

Create a new context specification

Enter or select the parent folder:

ExampleProject/contexts

= ExampleProject
= .settings
= bin
= contexts
= queries
== =rc

File name: ExampleAppContext

|

Select context specification type
@ [Application

T B Device

~ By Semantic Entity

) f% Semantic Location

) 4 Semantic Environment

'C?:' MNext > [Finish] ’ Cancel]

Figure 63: Create Context Specification Wizard

U)

This throws up a wizard, as shown in Figure 63 above, generating the empty context specification in
the workspace location specified. Double-clicking on the .ctx (Context Specification) file in the
workspace, opens up the file in the Context IDE Editor, in which the Context Specification can be
edited. As discussed in the SDK section, Context Specifications, and Context Query Sets are
persisted as XML, but transferred as objects using the methods described. The IDE editor provides
the ability to edit the three core facets of a Context Specification, these being:

e Context Definition
o Defines the properties of the context, as well as any data members
o Present in ALL context types
e Data Subscriptions
o Subscriptions for data from a data source, forwarded to the Data Acquisition
Component
o Only in Device contexts
e Context Rules
o A set of rules, types and functions that define the reasoning performed by the
context, in addition to the context-sensitive actions
o Present only in Application and Device contexts - not Semantic

Each of these is represented by a different tab in the Context Editor, in addition to a Source tab,
that shows the (un-editable) XML source for the Context Specification, as it is stored locally.

Version 1.0 Page 106 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

‘8 *PetershMobilePhone &3
Definition

= Properties

Edit property details by selecting from the list below:

Id Value
loaction Home
deviceType MaobilePhone
oWRer Peter
phoneMumber +44TR00F 222

+ Members

Edit member details by selecting from the list below:

Id Type Data Type Default Value Instance Of
o gpslocation data string gpsnmea-string
4 Add
Delete

Definition | Subscription | Rules | Source

Figure 64: Context Definition page

The Definition page, shown in Figure 64 above, demonstrates the interface for defining the
properties and members of a context. Defined properties are no necessarily static, as they may be
updated based on reasoning performed by rules - for example, the "location" property of the mobile

phone above may be updated if some other rules detect its location as being elsewhere, or that it is
updated directly.

Version 1.0 Page 107 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

%% *PetersMobilePhone &3

Subscription

® getGPs Datald: getGPS
® Bampletvent Protocol: | pull -
= Attributes

Edit attribute details by selecting from the list below:

Id Yalue
Datasource.PID PetersPhone
Pul.LMETHOD getGPs

PullFREQUEMCY 0h10m
PulLRETURNTYPE String

Mot o imes ST
Latasource, sib)

Edit pararneter details by selecting from the list below:

Definition | Subscription | Rules | Source

Figure 65: Data Subscription page

Figure 65, above, shows the Data Subscription page, that specifies a set of subscriptions to retrieve
the desired data made exposed by the data source - through either the PUSH or PULL protocols, as
handled by the Data Acquisition Component. The example shown demonstrates a PULL subscription,
featuring the attributes recognised by the PULL protocol, with the non-mandatory being greyed-out.

The functionalities of context-reasoning and interpretation, in order to perform context-sensitive
actions, is enabled by the set of context rules provided with the Device and Application contexts.
The Context Manager uses the DROOLS Rule Engine [4], to process these rules as well as to
maintain the modelled context from data acquired from data sources - Context Consumers. Context
Rules in a Context Specification contain several different parts that can be specified. These are:

Imports
Types
Functions
Rules

Context Rules provide the ability to declare inline types and functions that may be used in Rules for
a specific purpose. Any libraries referenced in these Rules / Functions / Types must be specified with
their fully qualified name (package name & class name), in the Imports, such that the Rule Engine
can recognise what they represent. Declared Types allow for Contexts to store certain data for
internal purposes, such as recording historical data. Declared Functions allow for Java-coded
functions to be defined and declared inline, that can be used in the rules themselves. Rules are the
individual rules entered into the Rule Engine. As previously mentioned, these are Drools formatted
rules - the core of which are “"When” clauses and “Then” actions, along with additional Drools rule
attributes that can be associated with a rule, to alter how it is handled by the Rule Engine.

Version 1.0 Page 108 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

‘B8 *PetersMobilePhone &2

Rules

~ Imports

Edit imports from the text below:

Jjava.lang.Math
Jjava.util.Date

4

~ Types

9F PastGPSLecation Fact Role: | cyent

b Meta Attributes

 (Class Variables

Variable Mame Variable Type
Latitude double
Lengitude double
timestamp Date

4| n
Definition | Subscription | Rules | Source

Figure 66: Context Rules - Imports and Types

Figure 66, above, shows part of the Context IDE interface for Context Rules, through which classes
can be imported (to use in types, functions or rules), as well as for the creation of types within a
context. In the example, the timestamp variable of the PastGPSLocation type, uses the Date type as
referenced in the imports. The fact role defines how the Rule Engine handles the type - the role of
event, as opposed to fact, declares that the type should be handled as an event, meaning that the
instance gets remembered temporally, such that it can be reasoned over as such.

Version 1.0 Page 109 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

‘B% *PetersMobilePhone &1

+ Functions

Return type and Mame

Arguments
Type Mame Type Variable Mame
[F double extractGP5Value String nmeaSstring
String type

double extractGPSValue (String mmeaString, String type)
double result = 0.0;

if (type.edquals("latitude™))

{
ffextract latitude

else if (type.equals("longitude™))
f/fextract longitude

retaorn result;

4|

m
Definition | Subscription | Rules | Source

Figure 67: Context Rules - Functions
Figure 67 above shows the Context IDE interface for creating Declared Functions in a Context

Specification. As previously stated, these are essentially Java-code functions, that can then be used

in Context Rules. The example function, extractGPSValue, could be used to extract the desired GPS
positional value from an acquired NMEA formatted string.

[PetersMobilePhone [] *TempMaeniteringfApp 5

* Rules
B WhenCeldinHome ~ Rule attributes
Id Value
na-loop true

When:
£location : Location(contextId == "Home")
fenvironment : Environment | location == %location)
ContextMember | instancelf == "tempCelsius", tempValue : nunValue) from fenvironment.members
ContextMember (contextId == "TempMonitoringApp"™, memberId == "ColdnessThreshold", threshold : numValue)
eval (tempValue < threshold }

4

Definition | Rules | Source
Figure 68: Context Rules - Rules LHS

Figure 68 above shows the IDE interface for creating the LHS (When) of Context Rules. These are
DROOLS DRL 'When' conditional statements, using the same syntax as described in the DROOLS

Version 1.0 Page 110 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

documentation [4], short example below. Also shown, is the area for specifying rule attributes such
as no-loop and salience. The exact usage of these can also be found in DROOLS documentation, and
upcoming Hydra training materials. The featured rule will fire when the sensed temperature (in
Celsius) in the "Home" location, is below that of the threshold defined by the "ColdnessThreshold"
member of the "TempMonitoringApp" Application context, of which this rule is a part.

Very basic Drools rule:

rule "Primitive support"
when

$c : Cheese($price : price)
then

Sc.setPrice(S$price * 2)
end

The firing of the LHS of the rule, results in the RHS actions, or the "Then" side, being triggered. The
Context Manager features several pre-defined actions, including:

Fire External Event (to Event Manager)
Fire Internal Event

Call Web Service

Store Context (to Storage Manager)

In addition to the predefined actions, the developer may also write their own "Then" code, allowing
for the full flexibility in authoring rules.

Add details

Add attributes and parameters for Action: PublishEvent

When
£location : Location(contextId == "Home") -
fenvironment : Enviromment| location == £location)
ContextMember (instance0Of == "tempCelsius", tempValue : numValue) from $environment.members
ContextMember | contextId == "TenpMonitoringRApp", memberId == "ColdnessThreshold™, threshold : numValue) I
eval [tempValue < threshold)
Fl 3
Attributes
| Id Value
Event.Topic TemnpStateChanged
I © EventManager.PID
I
Parameters
Mame Type Value
location string "Home"
temp(Celsius integer tempValue
@ Next > [Enish |[Cancel

Figure 69: Publish Event to Event Manager Wizard

Version 1.0 Page 111 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Predefined actions are added, throwing wizards, such as shown in Figure 69 (after the PublishEvent
action has been chosen). Here, the recognised attributes of the action (both mandatory and non-
mandatory) are displayed, as with the Subscriptions. In the figure, the Event.Topic and
EventManager.PID attributes are provided, though the latter is not mandatory, as the Context
Manager can also be configured with a default Event Manager to publish events (as discussed in the
SDK section).

Additionally, a set of Parameters can be set, to specify the additional key-value data sent with the
Event, when it is published to the Event Manager. This can either be static values (see the /ocation
parameter), or dynamic, using the values of the variables (from the LHS) provided - (the
tempCelcius parameter with the value of tempValue.

7.4.2 Context Queries
Context Queries can be configured in the Context IDE, and persisted locally as XML, as with Context
Specifications. They can be created in the same way also, as follows:

New -> Other -> Hydra -> Query Set

The Context Query Set editor contains two pages - one for any declared functions and imports
(utilising the same interfaces as the Context Specification editor). The other page is for the definition
of a set of queries, specifying the name, arguments, query code and output.

¥ *ExampleQuerySet ©7 =0
Queries
Query Name Arguments
i@ ‘getDevicesOf TypelnLocation Type Variable Name
String type
String locationld

getDevicesOfTypeInlocation (String type, String locationId)

Z£location : Location (contextId == locationId) -
fdevice : Device (location == £location)
ContextProperty [propertyld == "deviceType", value == type) from &£device.properties
4 2
+ Output
Variable Type
Sdevice Device

QuerySet | Queries

Version 1.0 Page 112 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Figure 70: Context Queries

Context Queries, as shown in Figure 70, are pre-configured queries in the Context Manager that
return a set of data as specified by the query. These are referred to by a unique identifier (the
Query Name), and can take a set of arguments to the query, such that the actual results of the
named query may be dynamic, but the logic used in the query to retrieve the results remains static.

These queries are stored in the rule engine, as Drools queries, and are essentially just the When
(LHS) part of the rule, specifying constraints for collecting a set of data.

The example query, given in Figure 70, returns the encoded context state (as XML) of all Device
contexts of the type specified by the fype argument, and with location matching that is specified by
the /ocationld argument.

7.5 Obligation Framework IDE

7.5.1 Obligation GUI

The Hydra middleware includes an Obligation Policy Framework which allows the execution of
actions upon the occurrence of certain events. Although it appears to be similar to the Context
Management Framework, both frameworks serve different purposes and are based on different
technologies: The Context Management Framework primarily works on a static fact base which is
built up from various data sources and integrated with the Hydra ontologies. The Obligation
Framework makes use of Complex Event Processing to recognise certain situations in highly dynamic
data streams such as sensor events.

In contrast to the Context Management Framework, it is not aimed at executing general-purpose
actions but rather at setting (security-relevant) configurations based on the current situation. As an
example, we will show how the Obligation Framework is used to set situation-specific access control
rights in the Hydra middleware.

The Obligation GUI is a user interface that is integrated into the Hydra IDE and allows developers to
control the Obligation Policy Framework in nhumerous ways. In this chapter, we describe the features
of the Obligation GUI and illustrate its use by a usage case in which “situation-aware” policies are
realised.

The Obligation GUI deals with the concepts Event, Action and Situation. An event is the definition of
a complex event pattern describing the occurrence of a critical incidence upon which a certain action
is required. The event pattern is described using the EPL1 language and refers to information that is
sent on logical event channels. An event channel represents a stream of events of a certain type,
such as temperature, humidity, network events, user interactions or events that have been retrieved
over the Hydra EventManager. Which event channels are available at run time depends on the kind
of plugins attached to the Obligation Framework and may thus vary. Every event type has a
property value which can be used to retrieve the content data of the event. In addition, event types
can provide further specific properties, further describing the event. For example, a temperature
event could provide the properties isFahrenheit and isCelcius while a network event could be
described by properties such as sourcelPaddress, packetSize, etc.

The developer can use the EPL syntax to define complex patterns of such events and then specify
an action that should be executed upon the occurrence of that event pattern. Actions are defined by
plugins in the Obligation Framework and can serve various purposes. In the use case example below
we will use actions only for logging the occurrence of an event, however, by adding further plugins
it would be possible to realise any other kind of action such as increasing the level of communication
security in untrusted environments, for example.

Version 1.0 Page 113 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

A Situation is defined by a starting and a stopping event. Once the starting event is detected, the
situation becomes active and stays it until the stopping event has been detected. The Obligation GUI
allows binding access control policies to such situations so that it becomes easy for Hydra
developers to specify which access rights should be applied in a certain situation.

In order to achieve this, a developer can make use of the five extensions to the eclipse IDE provided
by the Obligation GUI (cf. Figure 71):
o A Message Console

o An EventListener View
o A Situation View
o An EventlListener Editor
o A Situation Editor
I Obligation Policies - User Comes - The Hydra IDE =] 3]
File Edit MNavigate Search Project Hydra ‘Window Help
eomall . a8 ce o
=1 Lﬁ Obligation Policies |.?_‘, Resource
ﬁil'l &Lﬁsibﬂt... = O ||| Event Pattern Editor 53 =0
© 9|l Edit Event Trigger
User Comes
= - »
[User Goes IUser Comes Get help on the Esper ESP syntax
SELECT distance FROM DistanceSensor AIIE'-.-‘ents
H‘,':IraEx'ent
I‘-lehvork
[Flsituation
Stnck‘ﬁcks
D EmltE'--‘ent
D GanericListener
O LockScreen
[SilLogaing
O Eriayrainsongs
O Pla‘r'Sunn‘r'Songs
O UnlnckScreen
Edit Event Trigger]
B console 52 &Prnhlems| O Error Vlew| =] Eﬁ | e = i
Obligation Consale
Obligation Framework got connection to CEPController =
Obligation Framework got connection to PdpAdminService
Obligation Framerv connection to CEPController
Obligation Framev connection to PdpidminService
Obligation Framew connection to CEPController e
i:l'_'_c_rat,'_c:r. Framer connection to PdpaAdminService _ILI
4 L8
[e

Figure 71: The Obligation GUI perspective. EventListener view on the left, message
console on the bottom and event editor in the middle.

We now illustrate how a developer can use these extensions to define two complex event patterns,
create a situation from them and then assign different access control policies to that situation,
thereby creating a “situation-aware” policy:

At first, the developer would open the “Obligation GUI"” perspective in Eclipse. At the bottom of the
IDE screen he would then see the Message Console which simply displays information about the
Obligation GUI, such as the status of the connection between IDE and the Obligation Framework.
On the left is the EventListener View which lists the names of all complex event patterns and makes
it possible to activate or deactivate each of them. If no event patterns have been specified before,

Version 1.0 Page 114 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

this list will be empty and the developer would click on the green “+” button in order to create a
new one.

The new event pattern will be opened in the EventListener Editor in the middle of the screen. Using
this screen the developer would now define the complex event pattern that indicates a change in
the system status which is to be reacted on. Let us assume the developer would like to react on the
(complex) event of a user leaving the home. This complex event would consist of a number of more
detailed events which he would describe using the EPL syntax in the respective text field. For
example, the absence of a user could be described (in a simplified manner) by the following rules:

¢ motion has been detected
e door has been opened, then closed
¢ no motion detected for about 2 minutes

The developer would now specify these rules in EPL, whereas the IDE supports him by displaying
the list of available event channels from which he could choose. In our example, the EPL query
could look as follows:

SELECT ‘userabsent’ FROM

PATTERN [everyMotion (location. inside = true)
[1> Door (action="open’)

[1> Door (action=’ close)

00> (NOT Motion (location .inside=true)
WHERE timer : within (2 minutes))]

If this event pattern is detected, the Obligation Framework will execute the action which has been
specified in the checkbox list below. We assume the developer only wants to log this event, so he
just checks the Logging action.

Note that — depending on the specified event pattern — high volumes of events can be triggered and
defining time-consuming actions to them may lead to significant performance losses in the
middleware. For example the event pattern “SELECT * FROM AllEvents” will generate a huge
amount of events in a very short time and any other action than simply logging these will result in
dramatic computation overhead in the middleware (not in the IDE, of course). Developers are
advised to limit the output rate of events by adding “output every 10 seconds” to their rule, for
example.

Now that the developer has finished defining this event pattern, he simply clicks on “Save” and the
event pattern in stored in the Obligation Framework in the Hydra middleware instance to which he is
connected. By activating the checkbox besides the new entry in the EventListener view, the event
pattern becomes activated (i.e. the event engine starts listening to events and triggers the specified
action, if necessary).

After having defined an event for users leaving the home, the developer would define another event
for the user arriving at his or her home, analogous to the previous event. Now two event patterns
would appear in the Eventlistener view: User leaves and User arrives. From these events the
developer would now define a new situation User away. For this, he would change to the Situation
View and click on the green button to create a new situation. The new situation would be created
and opened in the Situation Editor (Figure 72). In this editor, the developer would then at first
name the situation “User Away”, select “User left” as starting event and “User arrives” as the
stopping event. On the right the list of all available access control policies in the Hydra middleware
instance is displayed and the developer would be able to select those policies he wants to be active
in case nobody is at home — for example he could activate policies denying access to all devices
except the door lock service.

After the situation has been saved, the Obligation Framework in the Hydra middleware listens to the
defined event patterns, detects the specified situation and enables or disables the access control

Version 1.0 Page 115 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

policies as set by the developer. These mechanisms now run solely in the middleware instance and
the IDE can be disconnected without interrupting the functioning of the Obligation Framework.

Il Obligation Policies - New Situation - The Hydra IDE - (Ol x|
Fle Edit Navigate Search Project Hydra Window Help

[- | &2 5-0l-aa -

[| 48 Obligation Policies | () Resource

Md& Situat... 53 IE 1 Situation Editor 1 Situation Editor 52 =5
Qe

Edit Situation =
[ErE—. 000

[User Amay Check the policies which should be active in this situation:
Select the event that starts the situation:

O [&luser Comes
[Seluser Goes

Select the event that stops the situation:

[FalUser Comes
O [Sluser Goes

Edit Situation |

Bl conscle 52 I[;_Prob\ams‘ - Error\new‘ x R B -r5-=086
Obligation Consale
Ckligation Framework g

| g || omoffim [|

Figure 72: Situation editor (empty list of policies on the right)

7.6 Access Control Policy Framework IDE

The Hydra Policy IDE essentially corresponds to the Policy Administration Point in the XACML
processing model. The Policy IDE serves as both an end-user and developer-user interface to guide
and assist them in writing XACML 1.x policies, represented as XML documents, using a customised
schema-backed editor (in Eclipse) to provide content-assistance and runtime validation of policies
being authored. It also provides the ability to manage a user’s PDPs on the Hydra network, with a
PDP browser that shows existing policies published to a PDP, and their status, allowing these to be
edited / deleted, and have new policies published to them.

The Policy Management aspect of the Policy IDE brings the ability to interface with existing PDPs on
the Hydra network, to manage the policies they have published to them, and their activity status.
The Policy IDE also provides the means to create local policy projects, for working on a set of
policies locally, without initially publishing them to a PDP. These policies can then be deployed to a
given PDP as desired. Figure 73 shows the Policy Management Dashboard, on the right-hand side of
the Eclipse IDE. This provides two functionalities - to either create a new policy, or to manage
existing policies.

Version 1.0 Page 116 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

- __
] Resource - nothing.xml - The Hydra IDE

=g

-

5= Outline 22 |] TaskList

An outline is not available.

File Edit Navigate Search Project Hydra Run

- Fa-ig e Bl et v
m ([SRemr)
[Project Explorer 52 = 8| PDP Browser £3 ~ O | [Hydra Policy IDE I3 =g
* - .
=R PDP Browser Policy Management
= Hydra Policy Project
~ Live Policy Repositories Stored Policies ~ Policy
Manage Hydra Policies
PDP Identifier 4 J@W ; >
PdpAdmin:UR:MichaelCrouch £| inactive \ / Creste New Policy
> 7] active \

PDP Browser

|7 Guvnor Resource History | [J] Guvnor Repositories | @ TrustManager | 2] Tasks &2
0 items

Window Help

@ S

5 Activate Policy
K Delete

‘ i Manage PDP Policies

! Description Resource

33M of 56M i |

Figure 73: The Policy IDE Dashboard

Choosing the second option, opens up the PDP Browser, that lists the various PDPs on the network,
which is shown in the central panel of the Eclipse IDE. Selecting a PDP here retrieves the list of
policies that are stored in that PDP’s Policy Repository, shown in the Stored Policies section of the
PDP Browser listed by their Policyld along with details of their activity status - either Active or
Inactive. Through this view, policies can be double-clicked, which downloads them from the PDP,
and opens them up in an XACML Policy Editor tab. Additionally, in this view, new policies can be

created and deleted,

mouse-button click.

using the Context Menu shown in Figure 73, which is activated with a right

Selecting the “Create New Policy” option, from the Policy Management Dashboard (Figure 73),

creates a new policy
Figure 74.

Version 1.0

with a base template XACML policy stub initialised for the user, as shown in

Page 117 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

51 Resource - defaultml - The Hydra IDE | _. LA ‘— ; k S | B o)
File Edit Source Navigate Search Project Hydra Run Window Help
G-H& s Qs B -5l T
3 ()
[Project Explo... &2 | = B ||] Policy: defaultaml &3 = 8| O Hydra Policy IDE 3 =8

SR O Policy Management
Hydra Policy P t
1 Hydre Policy Projec www.w3.0org/2001 /¥MLSchema-instance"”

1-schems-policy-01.xsd">

- Policy

Mznage Hydra Policies

T,
\ Create New Policy
& ,
Manage PDP Policies

2 ou.. % |E Ta. [T B

22 xml
[€] Policy Policyld=ENTER

o> Policy/RuleCombiningAlgld 39M of 58M im

Figure 74: Creating a new Policy

The Policy IDE allows for multiple different types of templates to be created to support a developer-
user in authoring policies for specific purposes. This template includes the root <Policy> element,
along with the key XACML 1.x-defined attributes of the policy - Policyld and RuleCombiningAlgid.
Policyld is the identifier of the policy, that is used to refer to the Policy externally, for retrieval and
management purposes, while RuleCombiningAlgld specifies the algorithm to use for combining the
different rules of the policy - for example, the algorithm ‘permit-overrides’ designates that if any rule
defined in the policy returns the decision PERMIT, than that overrides any the result of any other
rules, and is returned as the final decision. In addition, the template shown has some extra
attributes defined in the root element, designating the XACML schema used to define the policy.

The Policy IDE uses a Content Assist Processor to provide a number of functionalities to the Policy
IDE, to assist in the creation and editing of XACML 1.x Policies. Content Assist is activated by
pressing the Ctrl and Space buttons together, which is the standard convention for requesting
content assist in the Eclipse development environment, which then lists a selection of targeted
proposals relevant to the point at which assistance is requested. Selection of a proposal can either
insert a pair of XML tags, with required attributes specified, or insert attribute or element values.
The functionalities include:

e XACML Attribute Assistance
e XACML Structure Assistance

Version 1.0 Page 118 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

T *Policy: defaultxml &2 = 0 || & Hydra Policy IDE 2 =0

"MyExampl Policy Management

urn:oasis:pames:tc:xacml

% deny-overrides Permit Overrides

+ firstapplicable Rules returning PERMIT overrides all others.
% erdered-denyoverrides

malocation="urn:oasis:names:tc:xacml:1.0:pol

& ordered-permitoverrides
% permitoverrides

_</Palicy>

Figure 75: Content Assist for selecting Rule Combining Algorithm

Figure 75 demonstrates the Context Assist proposals for the RuleCombiningAlgld attribute of the
Policy element, with each proposal being accompanied by a brief description as to its purpose.

These proposals are retrieved from a local database of algorithms that are configured with the PDP.

Mostly, these are core XACML-defined algorithms, functions and attributes, but the Policy IDE can

also be informed of additional, non-standard functions and attributes, that are unique to the Hydra
environment, providing the ability to use components of the Hydra Middleware as input for making

access control decisions. As described previously, these additional functionalities are provided to the
PDPs through implemented PIPs, that register the attributes and functions of IDs (that they can
resolve) with the PDP, such that the ability to do so is then possible.

d="urn:oaslis:names:tocrxacml:l. 0:function: string-=gual ">
lataTyvpe="http: / v¥v.v3.org/ /2001 /KXMLSchemafstring">HMyExampleResource . FT
:eDesignator DataType="|" Attributeld="hvdra:policy:resource:pid"/ >

7

e httpe/Swwew w3, 0rg 2001 /XM LS chema®double -
% httpe/Swwwow3.org /2001 XML cherna®duration

% httpe/Swwew w3, 0rg 20017 XMLSchema®float
http:/Swwewow3 . org 2001/ XMLSchemaZgDay

http:/ Swwewow3 . org 2001 XMLSchema#gMonth
http:/ S wwow w3, org 2001 SXMLSchema®gMonthDay
http:/Swwewow3 . org 2001 7 XMLSchema®gYear
http:/Swwowow3.org, 2001 FXMLSchema®gYearMonth
httpe/fwwow w3, org, 2001 ZXMLSchemaZ®hexBinary
http:/fwwwow3.org/ 2001/ XMLSchema#string
http:/Swwowow3.org, 2001 ZXMLSchema®time

m

POl SR SR TR S S S

Figure 76: Content Assist selecting Data Type

Figure 76 shows another example of using the Content Assist to set the value of an XACML attribute
- this time the DataType attribute of the ResourceAttributeDesignator. The proposals given are taken
from the core XMLSchema, which defines the notations for referencing data types. Again, custom
data types can be created and supplied to the PDP through the PIP extension, which can then be
referenced in policies.

Version 1.0 Page 119 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

ributeDesignator DataTlype="" Attributeld="hydra:policy:resource.

</ Pol Element : Rule

| < ;]blllgatlons Content Model : (Description?, Target?, Condition?)
<»Rule

Description
PolicyDefaults
Target

comment - xml comment

XSL processing instruction - XSL processing instruction

4 UL}

source: defaultooml

Figure 77: Content Assist in adding new root Policy XACML Elements

Figure 77 demonstrates using the Content Assist to add new elements to the policy. XACML 1.x
policies have three core elements - Target, Rule and Obligations. Target specifies the context of the
policy - the particular subject, resource or action it governs. In the example, the Target element
defines that the policy is valid for any requests with a Resource attribute with and id of
“hydra:policy:resource:pid”, having a value of “MyExampleResource.PID”. This id represents the
persistent id that is attached to the CryptoHID created to register the requesting service on the
network. Rule elements each specify a set of conditions that must evaluate to true for the defined
Effect of the Rule to be returned. Obligations specify a set of obligations that are returned to the
PEP depending on the decision returned. Figure 77 shows a request for content assistance
underneath the Target element. It gives two proposals, the Obligations and Rule elements, while
also showing proposals that are possible, but not required.

When adding new elements to the document, through Content Assist, any required attributes
specified in the XACML 1.x schema are also added, some with default values - if they are also
defined by the schema. For example, when adding a Rule element, the attributes Ruleld and Effect
are automatically added. The possible values of the Effect attribute are defined in the XACML 1.x
schema as being only either Permit or Deny - anything else would cause an error (Figure 78), and as
such the value Permit is entered by default.

v http: //wwv.w3.0rg/2001/.
gnator DataType="" 4

"IsMyExampleSubject">
"urn:oasis:names:tcixacml:l.0:function:string-equal”>

n:oasis:names:tc:xacml : function:string-ons-and-only"s

Designator Datalyvpe="http://vwv.v3.0rg/2001/XMLSchema#string” Attributeld="hydra:policy:subjsct:pid"/>

<. alue Datalype="http://vwv.vw3.o0rg/2001/XMLSchemaf#string">MyExampleSubject.PID</AttributeValue>

ffect="Nong" Ruleld="CatchAllDeny"/>

_</Policy cve-attribute.3: The value 'None' of attribute 'Effect' on element 'Rule' is not valid with respect to its type,
‘EffectType',

Press 'F2' for focus|

Figure 78: XACML policy with an invalid attribute value

Version 1.0 Page 120 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

7.7

XACML policies authored using the Policy IDE are subject to validation by the XACML 1.x schema,
with any errors being reported with their location being underlined, and a tooltip that pops up with a
description of the error. This is demonstrated in Figure 78 with an invalid attribute value for the
Effect attribute. Typically, the validation errors will be due to structuring errors or missing elements.
To ensure schema validation, the schema being used must be specified in the root node of the
policy. This schema, which is automatically added into the root node of the policy on creation, is
internal to the Policy IDE, so only needs to be referred to by name in order for the system to use it.

is:names:teorxacml:1.0r

p: /v . w3 . org/ 2001 /XML

-algorithm:permitoverrides"

cve-complex-type.2.d.b: The content of element 'Resources’ is not complete, One of {"um:oasisinames:tcxacml:
<|1.0:policy":Resource, "urn:oasisinames:texacml:1.0:policy:AnyResource]' is expected.

Press 'F2' for focus)

oasis:names:tc:ixa
i ator DataType="h

Rule Effect="Deny" Ruleld="CatchldllDeny"/ >

Figure 79: XACML Schema Validation reporting errors

Figure 79 demonstrates the schema validation reporting errors with the XACML structure, as the
elements inside the Resources node of the Target element have been deleted. It reports that the
policy is not complete, and suggests what is missing.

Device Application Catalogue IDE

The Device Application Catalogue provides the integration of the DAC Browser in the Hydra IDE.
Using this view it is possible to connect to a local or to a remote instance of the DAC, retrieve and
show in real-time the Hydra device in the local area or in a remote network, and also use the DAC
discovery capabilities to create new Hydra Application.

As shown in Figure 80 the description of the device and the possibility to connect to the Wizard that
helps in the creation of a new Hydra Application can be seen. The Wizard is designed with a
Master/Details pattern, so selecting the device on the left, you can show the details on the right.

Right clicking on one or more selected devices, or by using the first icon on the top right the new
Hydra OSGi Plugin wizard menu using the selected devices can be accessed. On the upper right, the
icon with the arrow work as a start/stop button for start the DAC application in background
depending on its configuration. The configuration of the DAC view passes through the DAC
configuration preference page, showed in Figure 81. Here the nature of the DAC can be specified, if
it's local or remote. If it is local, the path of the executable must be specified, otherwise if it's a
remote DAC the URL of the remote DAC application needs to be provided. Any change on the
preference page will fire changes on the model and in the other plugins that are using the DAC data.

Version 1.0 Page 121 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

& Hydra Device Application Catalogue Browser &3 i ™ = 0
Hydra devices Device details
These are the local Hydra devices and Non-Hydra Devices: These are the detail for the selected device:
B} GUPnPNetworkTemp Friendly Name GUPNF Network Temp

-?0' G o tch Unique device name 703fdb08-128e-47bf-b66e-714allbcdbZa
[GUPRP Network Light [X Manufacturer GUPNP Developers

Manufacturer URL http://www.gupnp.org

Model description Software emulated UPnP light bulb

Model name Network Light

Model URL http://www.gupnp.org

Services 2

embedded devices 0

Device URN urmn:schemas-upnp-org:device:DimmableLight:1

Remote Endpoint 23.213.125.89:40878
interface to host 2321312591

Figure 80: Device Application Catalogue View

The DAC bundle is composed of two main plugins: one charged with UI visualisation (Preference
page and DAC View) and the other, called model, charged of connection and data exchange to the
DAC, set the callback processes, and retrieves Hydra device information from the Device Application
Catalogue. The model provides end declares the following interface:

public interface IDacModel {

public void startDac () ;

public void stopDac();

public void setDacURL(String url,boolean local, String localPath);
public ObservablelList getAllGateways();

public Observablelist getHydraDevice (String gateway);

public Observablelist getUnresolvedDevices (String gateway); }

One relevant thing developed in the DAC model bundle is that the used collection to store and
maintain the .Net DAC retrieved information is an ObservableList, which provides automatic firing
change event to any other bundle registered to this observable. Using Eclipse data-binding, any
plug-in that creates a dependence on this model within its views or form, is informed in real-time of
any changes from the DAC (discovered a new device, removed a device, changes on a device
description etc). This bundle is persistent and must be included in the Hydra IDE environment to
work correctly.

Figure 81 presents a screenshot of the DAC configuration preference page as part of the Device
Application Catalogue IDE.

Version 1.0 Page 122 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

DAC Configuration =L -
b General Specify the location of the DAC.If you are using a local DAC you need to
[* Help specify if the path of the DAC executible.If you are using a remove DAC you
< Hydra Middleware need to specify the URL of the DAC application.
) DAC Location:
Connection
@ Local DAC
| DAC Configuratic N
Install/Update) Remote DAC
Local path of Hydra DAC: [|] | Browse...
|Restore Defaults|
Y e —
@J [Cancel |

Figure 81: DAC configuration preference page
7.8 Installing Limbo in IDE
After making the Limbo tool accessible from Eclipse (by registering the corresponding OSGi bundle)
the Limbo wizard supporting the user in the Eclipse GUI controlling Limbo must be installed.

The wizard is realized as an Eclipse plugin. It is stored in the plugin directory of Eclipse using the
following commands:

eLimboWizard — Export — Plug-In Development — Deployable plug-ins and fragments — Directory
— local Eclipse plug-in directory.

After restarting Eclipse, the Limbo wizard can be activated by pressing the corresponding button
which is indicated by the red line in the subsequent figure:

= Java - Test/limbo.tt - Eclif
File | Edit | Mavigate Searc

o = BB timhk
Figure 82: Limbo wizard selection in Eclipse

Version 1.0 Page 123 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

o [OS]

Using limbo in the IDE:
The Limbo wizard starting page is shown in the next figure:

HYDRA

=
Limbo Wizard
€3 Container must be specified
Container | Browse...
wdl file

Limbo directory:

Einish

Mext =

The entry fields have the following meaning:
« Container: the name of the Eclipse project processed

+» wsdl file: the path to the WSDL file
« Limbo directory: the directory of the limbo tool

The next figure shows an example:

Cancel

.’5“1
Figure 83: Limbo wizard starting point

30/04/2010

Page 124 of 157

Version 1.0

D12.9 - Final External Developers Workshops Teaching Materials

=[O =]
HYDRA

Limbo Wizard

This wizard creates a new file with *.tt and *.bat extension that can be opened by
a multi-page editor. The *.tt file is shown in the editor, the *.bat file will be

D:/Projekte/Hydra/runtime-EclipseApplication,/Test/resource:

Hydra

Container: fTest

wedl file:
Limbo directory: Du/Projelte/Hydra/limbe-0.1

Cancel

@ < Back Next » Finish
Figure 84: Limbo wizard options
The following appears after NVextis pressed:
_ o [
Limbo Wizard ﬂ
Output direct t b ified
& Output directory must be specifie e
Language: ’jse v]
Platform: ’standalone v]
Generationtype: ’all v]
Protocol: ’TCP v]
Leghandler: ’false v]
Outputdirectoy:
Figure 85: Limbo wizard, selecting output
30/04/2010

Page 125 of 157

Version 1.0

Hydra D12.9 - Final External Developers Workshops Teaching Materials

The entry fields have the following meaning:
+ Language: JSE or JME
« Platform: for specifying the target platform: standalone or osgi
* Generation type: server, client or both
* Protocol: TCP, UDP, or BT
* Loghandler: activating logging
« Output directory: the output directory of the generated files. This defaults to the container
directory.
The next figure shows an example. Note the Finish button is enabled when the data has been
entered.

= - (o

Limbo Wizard ‘m

This wizard creates a new file with *.bat extension.

HYDRA

Language: hse

Platform: ’ﬁandﬂone

Generationtype: ’all

Brotocal: ’TCP

Leghandler: ’fahe

Outputdirectoy: D:/Projekte/Hydra/runtime-EclipseApplication,/ Test

@:.l Mext = Einish] ’ Cancel
Figure 86: Limbo wizard, output directory
After pressing the Finish button the file /imbo.txtis generated and subsequently executed.
Here comes the content of this file:
@echo off
REM limbodirectory=D:/Projekte/Hydra/limbo-0.1
REM language=jse
REM platform=standalone
REM generationtype=all
REM protocol=TCP
REM loghandler=false
REM outputdirectory=D:/Projekte/Hydra/runtime-EclipseApplication/Test
REM wsdlfilename=D:/Projekte/Hydra/runtime-
EclipseApplication/Test/resources/th03r.wsdl
cd D:/Projekte/Hydra/limbo-0.1
java -jar D:/Projekte/Hydra/limbo-0.1/limbo.Jjar -limbo.language Jjse -
limbo.platform standalone -limbo.generationtype all -limbo.protocol TCP -
limbo.loghandler false -limbo.outputdirectory D:/Projekte/Hydra/runtime-
Version 1.0 Page 126 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

EclipseApplication/Test D:/Projekte/Hydra/runtime-
EclipseApplication/Test/resources/th03r.wsdl

Postprocessing

Limbo generates quite a lot of source files which have to be processed further. Subsequent to the
source 2 code generation, the generated files can be modified. As this is outside the scope of limbo,
this is not detailed here, but the reader should know this can be done by the tools available in
Eclipse.

Version 1.0 Page 127 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

8. Integrated Development Environment - .Net

This section provides tutorials on how to use each component of the Hydra .NET IDE, including a
general introduction to the whole IDE itself.
8.1 Creating a Basic Hydra Application

In this chapter the basic steps to create a Hydra application in a .Net environment are described and
how the Hydra SDK is integrated into the Visual Studio development environment is shown.

8.2 Creating a Hydra application from a template

In Visual Studio selecting “New Project” as seen below

Project types: Termnplates: ’-NF—T Framewaork 3.5 ']EI
Visual C# Visual Studio installed templates
Smart Device) HydraBasicApplication A HydraEnergyApplication
[Yatabase Wy T e
Hydra
2 et S imeT el
e ———————

Otherlanguages
Other ProjectTypes
TestProjecte

Contains basic functienality to create a Hydra application

Mame——— MyFirstHydralApp

Location: C\Users\peterros.CMNETMNG Documents\Visual Studio 2008\Projects -
Solution: Create new Solution V] [¥] Create directory for solution
|
Solution Name: - MyFirstHydraApp [] Add to Source Control
[0K l ’ Cancel

Figure 87: Template view in Visual Studio

Under the Visual C# menu the Hydra category appears. Selecting the type of Hydra application that
should be develop, e.g. a basic Hydra Application.

Once the type of application is selected click OK - Hydra will create the necessary project files:

Version 1.0 Page 128 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

op - Microsoft Visual Studic (Administrator) ™ hais el P %
File Edit View Project Build Debug Data Tools Test Window Help
i -iE- S @ ¥ Ca]9 - - LI E | b Debug - Any CPU - | [# typeoi(string) ER R

Solution Explorer - MyFirstHydraApp ~ 3 x

~ Start Page

BlaE&A
[Selution 'MyFirstHydraApp' (L project)
B sy
[=dl Properties
[[=3] References
- [Service References
- g Web References
- [app.config
- A] applicationbindings.xsl
-] NetworkManagerApplicationService.cs
-] Program.cs

Microsoft*

Visual Studio 2008

LEMyF\rstHydraApp
EDEVE‘DFIEI’TDU'S

E HydraEnergyApplication2
:%HydraEasicApphcatmnS
:EBaslcPhuneTe;tDew:E
:%ApphcatmnDew:EManager

|xuq|uu_|_;;g

»
C -,

keywords.

discussion.
Open:
Create:

Project...
Project...

Getting Started

What's new in Visual C£#7
Create Your First Application
HowDol...?

Learn Visual C#

Download Additicnal Content
4 | I |

na Solution Explorer [Class View

T —

MSDN: Visual C# Headlines

Understanding the "Dynam)

Tue, 26 Jan 201001:25:00 Z - |=
the subtle difference betwee

Constraints are not part of

Fri, 22 Jan 2010 04:25:00 Z - E
constraints and overload res:

Building a LINQ Provider

Tue, 19 Jan 2010 00:25:00 Z - —
IQueryable provider similar t
Take our new survey on de
Tue, 12 Jan 2010 22:45:00 Z -
tools and MSDN content by
learn and how you learn as a
Tuples, Anonymous Types, i
Tue. 12 Jan 2010 01:00:00 Z -

-~

»

Properties ~ 3 x
MyFirstHydraApp Project Propertic ~

: 4L E

Project File MyFirstHydraApp.c
Project Folder Ci\Users\peterros.(]

Project File
The name of the file containing
build, configuration, and other info...

Find Results 1

218 =8

=l

]

g Error L\stl% Find Results 1 |

Ready

Figure 88: Auto generated files for Basic Hydra Application

The following files and references are automatically created:

e The main program file named “program.cs”

e Arule file for binding your devices to identifiers (PIDs). This file is called

applicationbindings.xsl

e A Web Reference to the Application Device Manager

e A Web Reference to the Network Manager (in file networkmanagerapplicaitonservice.cs)

e A Web Reference for creating WS clients for accessing basic Hydra devices

8.2.1 Initiating the Network Manager

The first step in any Hydra application is to initiate the Network Manager in order to be able to

communicate with other Hydra Managers and devices. This is done in the method

SetUpNetworkManager:

void SetUpNetworkManager (string url)

{
m_networkmanager = new NetworkManagerApplicationService();
m_networkmanager.Url = url;
System.Net.ServicePointManager.Expect1l00Continue = false;
}
8.2,.2 Initiating the Application Device Manager

The next step is to initiate the Application Device Manager. There are three things you need to do to
initiate the Application Device Manager:

Version 1.0

Page 129 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

e Retrieve the Hydra ID for the Application Device Manager from the Network Manager
e Use the HID to create an endpoint URL for the Application Device Manager

e Load the device bindings into the Application Device Manager (if there is no binding
provided a bindings file the Application Device Manager, will use default ways of making
bindings instead).

void SetUpApplicationDeviceManager (string gateway, string endpoint, string appname)
{

m _applicationdevicemanager = new ApplicationDeviceManager.ApplicationDeviceManager ();

//Use NM to find HID for Application Device Manager

string AppDevMgrHID =
m networkmanager.getHIDsbyDescriptionAsString ("ApplicationDeviceManager:" + gateway +
":Staticws");

string[] DacHIDs = AppDevMgrHID.Split(' ');
AppDevMgrHID = DacHIDs[0].Trim() ;

m applicationdevicemanager.Url = endpoint + "/SOAPTunneling/0/" + AppDevMgrHID +
"/0/hola";

try
{
//check if bindingfile is correct xml before sending to application device manager
XmlDocument myDoc = new XmlDocument ();
string bindingrules = "";
myDoc.Load ("applicationbindings.xsl");

bindingrules = myDoc.OuterXml;

m_applicationdevicemanager.AddApplicationBinding (appname, bindingrules);

}
catch (Exception e)
{
}

}
At this point a connection to a NetworkManager is established and the DAC is initiated.

8.2.3 Working with devices

Once the Network Manager and Application Device Manager are initiated, working with devices can
be started. A Hydra Device can be used in an application by creating a Web Service client for it. The
web reference ‘HydraDevice’ should be used.

Version 1.0 Page 130 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
o MyFwstHydﬂ;}—Micmmﬂ Visual Studio (Administrater) . 4) l " . S| B b
File Edit Yiew Refactor Project Build Debug Data Tools Test Window Help
RN RN W= N ECREENE - &+ 5| b Debug + Any CPU + | [# typeof(string) - Eﬁfﬁx‘;
D% boa EE[= 2O Ty Yl
>$_- Solution Explorer - Solution 'MyFirstHydra... » 1 X ﬁm}/m ~ » | Properties ~ 1 x
é_‘ % = -E. EI 0%' - - 'jgM}rFlrstHydraAppMyFlrstHydraA * ¥SetUpApplicationDeviceManager = T
2 é?_ijzlﬂ;:i;sﬂ:;;if::AW { project) rr_applicatinndevicen’anager.nddnp]Tl g: =
54 Properties :‘:at,c'n (Exception e)
] References : :
g Service References
O | Web References
: & ApplicationDeviceManager
& HydraDevice Mm
xj :Esilccoartwlf;ibmdlngs‘xsl “‘EX GetErrorMessageCompletedEventirgs -
- #] NetworkManagerApplicationService.cs r é g:E;Z?:::ézﬁ:sé;’;::;:::gz:Handle’ i a
- ‘] Program.cs : 4 GetHasErrorCompletedEventHandler
|':-=¥J Solution Explorer |Q%C|355 View 4 [[“fg GetHydraDeviceXMLCompletedEventArgs
= = £ GetHydraDeviceXMLCompletedEventHandler F
R 4 GetHydralDCompletedEventirgs -
2 | el 5 F 4 GetHydralDCompletedEventHandler
1[“f GetPhysicalDiscoveryInfoCompletedEventArgs ; Pl
4 GetPhysicalDiscoveryInfoCompletedEventHandler il
& GetPropertyCompletedEventirgs =
£ GetPropertyCompletedEventHandler
“44 GetStatusCompletedEventArgs
E) GetStatusCompletedEventHandler e
e "123 HydraDeviceWS class MyFirstHydraApp.Hyt
= - - |24 SetHydralDCompletedEventHandler i
|'d 2 L|5t|% Find Results 1 | £ SetPropertyCompletedEventHandler
Ready] SetStatusCompletedEventHandler NS
= A StartNevicel nmnleterdFuentHandler || —
Figure 89: Creating WS clients for device
A Hydra identifier is needed to create an endpoint URL for the device (assuming the base URL in the
variable “endpoint” is used) which is assigned to the identifier “PetersPhone” in the application
bindings file:
HydraDevice.HydraDeviceWS myHydraDevice = new HydraDevice.HydraDeviceWs () ;
string myhid=m applicationdevicemanager.GetHID("", "PetersPhone");
if (myhid !="")
myHydraDevice.Url = endpoint + "/SOAPTunneling/0/" + myhid + "/0/hola";
Once you have established a URL for the device you can now start consuming its Hydra Services.
This example only works with devices at a generic level, as Hydra Device and therefore only have
access to meta data services like “GetDeviceXml”:
string myXml = myHydraDevice.GetHydraDeviceXML () ;
8.2.4 Applications Bindings
The application bindings file (applicationbindings.xs/) is used to assign persistent and context
dependent identifiers to devices.
The bindings are expressed as a set of xslt rules over the Hydra Device XML.
<binding>
<xsl:template match="upnp:device">
<xsl:if test="upnp:deviceType='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1' or
Version 1.0 Page 131 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

<xsl:if test="upnp:friendlyName='DiscoBall"">
<hydraUDN>DiscoBall</hydraUDN>
<locationdata>
<building>CNet Office</building>
<room>Main</room>
<position>Table</position>
</locationdata>
</xsl:if>

<xsl:if test="upnp:friendlyName='PetersLight' and hydra:gateway='DELL1'">
<hydraUDN>DemolLight</hydraUDN>
<locationdata>
<building>CNet Office</building>
<room>Main</room>
<position>Table</position>
</locationdata>
</xsl:if>

<xsl:if test="hydra:gateway="'Casa Domotica'">
<hydraUDN><xsl:value-of select="upnp:friendlyName"/></hydraUDN>
<locationdata>
<building>Casa Domotica</building>
<room><xsl:value-of select="upnp:friendlyName"/></room>
</locationdata>

</xsl:if>

</binding>

The hydraUDNis the Hydra Unique Device Name, which can be derived from any of the properties in
the Device XML, though normally it is set to the upnp:friendlyName. The binding combines the
hydraUDN with possible location (context) data, into a PID (Preferred Identifier) for the device.
Applying the binding rules to the Device XML results in the specific binding being added to the DAC
where it can be used by the application code.

The developer can define the application bindings by updating the bindings XML file (an associated
XML schema supports the editing). In any case the SDK also provides a default binding of devices,
based on the upnp:friendlyName and without context data.

8.3 Creating an Advanced Hydra Application

One of the most common uses of the Hydra middleware is to use it for monitoring and controlling
the energy consumption of physical devices.

8.3.1 Initiate Application
To create an Energy Application you follow the same steps as before:
e Select New Project

e Select HydraEnergyApplication template

Version 1.0 Page 132 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

[=d Properties
(- [References

- g Service References Recent Projects

- g Web References

- 3 - - — - — Tl - -] L] = é
@g MyFirstEnergyApp - Microsoft Visual Studio (Administrator) =
—_— e o — - -
File Edit View Project Build Debug Data Tools Test Window Help
- - @ % 52290 - E-5| b Deug - AnyCPU - | @ peofistring M= TR S =R
?r Solution Explorer - MyFirstEnergyApp -3 x Start pa!'e] - x |Properties ~ 1 x
7 =& E| 8 MyFirstEnergyApp Project Propert
e |- - ; i &
g ‘_;‘;EIU FlrstEgyApp (1 project) " Vr.oscft | S d' : =]
= - (5 ., nert
el “ |Sua tu IO 2008 Project File MyFirstEnergy&pp.

Project Folder C:\Users\peterros.C|

MS| ual C# Headlines

|_"P app.config ﬁMyFir;tEnergyApp Understanding the “Dynamic” and “(|=
- A] applicationbindings.s! _:% MyFirstHydraApp Tue, 26 Jan 2010 01:25:00 7 - Microsoft'
.] EventManagerService.cs E DeveloperTools the subtle difference between the "dyn
‘g EventSubscriberService.cs EHydraEnargyApphcationE keyword.s. .
#] MetworkManagerApplicationService.cs [HydraBasicApplication5 C?nstramtsare not part of t.he s.\gn.at
‘Q Program.cs '_:%Ba;i(PhDHETestDevice Fri, 22J§ﬂ 201004:25:00 Z - Eric's intrigy|
constraints and overload resolution ger
discussion, -
Open: Project... Building a LINQ Provider
e Rrojecty Tue, 19 Jan 2010 00:25:00 Z - Learn how

IQueryable provider similar to the LINQ
Getting Started Take our new survey on developer le
Tue, 12 Jan 2010 22:45:00 Z - Help us irr

‘What's new in Visual C£7 tools and MSDN content by taking a br
learn and how you learn as a developer

Create Your First Application . -
How Dol..7 Project File
. ’ S = ||| The name of the file containing

L:»f«gSD\utmﬂ Explorer @Class\{iew 4 m 3 build, configuration, and other info...

Find Results 1 ~ 3 x

D | &5 =%/

Il 3

2 Error L\st|% Find Results 1 ‘

Ready

Figure 90: Energy Application Template view

The following files and references are automatically created:
e The main program file named “program.cs”
e Arule file for binding your devices to identifiers. This file is called applicationbindings.xsl
e A Web Reference to the Application Device Manager
e A Web Reference to the Network Manager (in file networkmanagerapplicaitonservice.cs)
e A Web Reference to the Event Manager (in file eventmanagerservice.cs)
e A Web Reference for creating WS clients for accessing basic Hydra devices.

e A Web Reference for creating WS clients for accessing Basic Switch and Enhanced Switch
devices.

e Web Reference for accessing the Energy services of Hydra devices.
8.3.2 Searching and finding for devices

Next step is to access and control some energy consuming devices. Under the “Web References”
menu two new references to “BasicSwitchDevice” and “EnhancedSwitchDevice” are shown.

Version 1.0 Page 133 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

File Edit View Project Build Debug Data Tools Test Window Help

G- - S @] % LR[00 -5 b Debug -

41

%k, ax|EE|S 20 13485 Q0
}i_- Selution Explorer - Solution 'MyFirst... » 1 X / ¥ x | Properties ~ 1 X
é‘ .5.5 E ﬁgh’l - BasicSwitchDevice Folder Propert -
g J Solution 'MyFirstEnergyfpp' (1 project)] g: alllEl
= :E MyFirstEnergyApp n

G &4 Properties Folder Mame BasicSwitchDevice

5 References URL Behavior Dynamic

4 Service References Web Reference http://212.214.80.16

= [Web References
----- @ ApplicationDeviceManager
B e c5echoevice :
----- @ EnhancedSwitchDevice
----- @ HydraDeviceEnergyWs |
. @ HydraDeviceHydraWs =]

..... i app.config

----- A] applicationbindings.xsl

----- #] EventManagerService.cs

----- #] EventSubscriberService.cs

----- #] NetworkManagerApplicationService

..... Cﬁ Program.cs

[|

Folder Name
< | m | ¢ = ||| Name of this folder
|._:§|Su:u|utiu:un Explorer |§§CI355WEW| 1
Find Results 1 ~ 01 X

i

A SINE
|_‘a Error Li5t|% Find Results 1 |

Ready

Figure 91: Selecting web references to devices

These can be used to control a particular device, but finding the device is required. Setup the
Network and Application Device Manager is necessary as described in previous section (the code is
already in the program.cs file).

Once this is done, querying the Application Device Manager can be used to find the devices. The
knowledge of the Hydra Device XML structure and the standard XML query language “Xpath” is
needed.

The following XPath statement will match each device that is of type “basicswitchdevice”.

".//*[name () ="deviceType' and .='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1"']"”

If you use this statement as input to the method GetHydraURLsFromXPath of the
Application Device Manager you will get a list of all discovered and active devices in a
Hydra Network. Since a device might expose several web services you need to specify
which one you are interested in. In this case it is “hydraidStaticWS”. This method is a
shortcut compared with retrieving the HID and composing the URL as it was described
in the previous example.

public void TurnOnAllSwitchDevices ()

Version 1.0 Page 134 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

{

string basicswitches =
m_applicationdevicemanager.GetHydraURLsFromXpath (".//* [name ()='deviceType' and
.='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1']", "hydraidStaticws", "");

8.3.3 Invoking Device Services

The next step is to start the controlling of the devices. This code shows an example of how to turn
on all switches:

public void TurnOnAllSwitchDevices ()
{
string basicswitches =

m_applicationdevicemanager.GetHydraURLsFromXpath (".//* [name ()='deviceType' and
.='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1"']", "hydraidStaticws", "");
char[] splitchar = new char[1l];

splitchar([0] = ', "';
string[] switches = basicswitches.Split (splitchar);

foreach (string switchurl in switches)

{

BasicSwitchDevice.BasicSwitchWS mySwitch = new BasicSwitchDevice.BasicSwitchWs () ;
mySwitch.Url = switchurl;

mySwitch.TurnOn () ;
}
}

This example shows how to use the EnergyWS web service to calculate the current total effect for all
running devices:

public int GetTotalCurrentEffect ()
{
int returnvalue = 0;
string basicswitches =
m_applicationdevicemanager.GetHydraURLsFromXpath (".//* [name ()="deviceType' and
.='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1']", "hydraidEnergyWs", "");

char[] splitchar = new char[1l];

splitchar([0] = ', ';
string[] switches = basicswitches.Split (splitchar);

foreach (string switchurl in switches)

{
HydraDeviceEnergyWS.HydraDeviceEnergyWS mySwitch = new
HydraDeviceEnergyWS.HydraDeviceEnergyWs () ;

mySwitch.Url = switchurl;
string effectstring = mySwitch.GetCurrentEffect();

if (effectstring != "")
{

returnvalue = returnvalue + System.Convert.ToInt32 (effectstring);

}

8.4 Understanding the Hydra Device XML

Since all metadata and the state of a device is communicated using an XML structure it is
fundamentally important to understand this structure and how it can be used. Below is an example
of the Hydra Device XML for a device. The Hydra Device XML is an extension of the UPnP SCPD XML
(Service Control Point Document) vocabulary. Elements with the namespace “hydra” are the Hydra-
specific extensions.

Version 1.0 Page 135 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<device>
<deviceType>urn:schemas-upnp-org:hydradevice:enhanchedswitchdevice:1</deviceType>

<hydraidDynamicWS xmlIns="hydra">0.0.0.6189708676876140718</hydraidDynamicWS>

<energywsendpoint xmlns="hydra">http://212.214.80.144:8080/hydradevice/8619ff3a-af98-44a9-85da-
7f5f18f7e562/energy</energywsendpoint>

<hydraidStaticWS xmlIns="hydra">0.0.0.6592261886889156134</hydraidStaticWwS>

<discoveryinfo
xmlIns="hydra"><tellstickdevice><name>PetersLight2</name><vendor>Nexa</vendor><deviceid>2</
deviceid></tellstickdevice></discoveryinfo>

<hydraidUPnPService_urn_schemas-upnp-org_memoryservice_1
xmins="hydra">0.0.0.4695383175879738995</hydraidUPnPService_urn_schemas-upnp-
org_memoryservice_1>

<networkmanager
xmins="hydra">http://localhost:8082/services/NetworkManagerApplication</networkmanager>

<hydraUDN xmlIns="hydra">PetersLight2</hydraUDN>

<standbytime xmlns="hydra">60</standbytime>

<status xmIns="hydra">web service initiated</status>

<hydraidStaticWSDescription xmIns="hydra">PetersLight2:StaticWS</hydraidStaticWSDescription>

<hydraidUPnPService_urn_schemas-upnp-org_locationservice_1
xmlns="hydra">0.0.0.8817877591614169464</hydraidUPnPService_urn_schemas-upnp-
org_locationservice_1>

<hydraidUPnPService_urn_schemas-upnp-org_energyservice_1
xmlns="hydra">0.0.0.410334127518851262</hydraidUPnPService_urn_schemas-upnp-
org_energyservice_1>

<hydraWSEndpoint xmIns="hydra">http://212.214.80.144:8080/hydradevice/8619ff3a-af98-44a9-85da-
7f5f18f7e562</hydraWSEndpoint>

<UPnPEndpoint xmins="hydra">http://212.214.80.144:64277/</UPnPEndpoint>

<hydraidUPnPService_urn_upnp-org_serviceld_switchservice_1
xmins="hydra">0.0.0.7715272012937744631</hydraidUPnPService_urn_upnp-
org_serviceld_switchservice_1>

<dynamicWSEndpoint xmIns="hydra">http://212.214.80.144:64277/</dynamicWSEndpoint>

<wsendpoint xmIns="hydra">http://212.214.80.144:8080/0/EnhancedSwitchWS</wsendpoint>

<hydraidHydraWs xmins="hydra">0.0.0.713272519360667694</hydraidHydraWs>

<DACEndpoint xmlns="hydra">http://212.214.80.144:8080/ApplicationDeviceManager</DACEndpoint>

<hydraidUPnPDescription xmlns="hydra">PetersLight2:UPnP</hydraidUPnPDescription>

<hydraidHydraWSDescription xmIns="hydra">PetersLight2:HydraWS</hydraidHydraWSDescription>

<securityinfo xmIns="hydra"><securitylnfo xmlIns="hydra"><property
name="tellstick.api.version"><value>2.1</value></property><property
name="switch.mode"><value>2</value></property><property
name="EncryptionProtocol"><value>None</value></property></securitylnfo></securityinfo>

<hydraidUPnPService_urn_upnp-org_serviceld_1
xmlns="hydra">0.0.0.6339391984478104269</hydraidUPnPService_urn_upnp-org_serviceld_1>

<hydraidEnergyWSDescription xmIns="hydra">PetersLight2:EnergyWS</hydraidEnergyWSDescription>

<gateway xmIns="hydra">BLONDIE</gateway>

<hydraidUPnP xmlIns="hydra">0.0.0.3263501067198386232</hydraidUPnP>

<hydraidEnergyWs xmlns="hydra">0.0.0.3952190387415366563</hydraidEnergyWs>

<friendlyName>PetersLight2</friendlyName>

<manufacturer>Telldus</manufacturer>

<manufacturerURL>http://www.telldus.se</manufacturerURL>

Version 1.0 Page 136 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
<modelDescription>Remote switch</modelDescription>
<modelName>Tellstick</modelName>
<modelNumber>X1</modelNumber>
<UDN>uuid:8619ff3a-af98-44a9-85da-7f5f18f7e562</UDN>
</device>
</root>

The following element is an example of a standard UPnP element. It specifies the device type:

<deviceType>urn:schemas-upnp-org:hydradevice:enhanchedswitchdevice:1</deviceType>

This element is an example of a Hydra-specific extension. It specifies the gateway where the device
iS running:

<gateway xmlns="hydra">BLONDIE</gateway>

There are a number of methods that allows for searching of devices in the network. These require
XPath expressions as parameter. This Xpath expression is evaluated against the Hydra Device XML
for each device to decide if the match the search criteria or not.

The various elements can be grouped into categories:
PID

The hydraUDN element represents the PID (Persistent ID) that has been assigned to this particular
device.

<hydraUDN xmlns="hydra'>PetersLight2</hydraUDN>

Hydraids

The following elements represents the different Hydra IDs (HID) for different device services. The
hydraidStaticWs is the normal HID to be used, while hydraidHydraWs is the HID to access the
generic Hydra services of the devices.

Note the element hydraidUPnPService_, for each UPnP service a HID is created with the format
hydraidUPnPService_serviceid (where in the service id : has been replaced with _ as in
“hydraidUPnPService_urn_schemas-upnp-org_energyservice_1")

hydraidStaticWs
hydraidDynamicWSs
hydraidHydraWs
hydraidEnergyWs

hydraidUPnPService

Endpoints

The endpoint elements represent the endpoint to the device service. Normally this should not be
used. Use the corresponding HID instead.

energywsendpoint

wsendpoint

dynamicwsendpoint

UPnPendpoint

Other Hydra elements

Version 1.0 Page 137 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

The DACEndpoint element represents the DAC that has discovered and created the Hydra Device. It
“owns” the device

<DACEndpoint
xmlns="hydra" >http://212.214.80.144:8080/ApplicationDeviceManager</DACEndpoint>

The gateway element represents the gateway where the device is running:

<gateway xmlns="hydra">BLONDIE</gateway>

UPnP elements

The following elements are standard UPnP elements
<deviceType>urn:schemas-upnp-org:hydradevice:enhanchedswitchdevice:1</deviceType>
<friendlyName>PetersLight2</friendlyName>

<manufacturer>Telldus</manufacturer>
<manufacturerURL>http://www.telldus.se</manufacturerURL>
<modelDescription>Remote switch</modelDescription>
<modelName>Tellstick</modelName>

<modelNumber>X1</modelNumber>

<UDN>uuid:8619ff3a-af98-44a9-85da-7£5£18£7e562</UDN>

8.4.1 Extending the Hydra Device XML

It is possible to extend the Hydra Device XML to incorporate your own meta data and state
information. Simply call the method SetProperty in the Hydra WS, then you can add properties to
the device which will be available in the Hydra Device XML and can be used as part of your search
expressions.

Calling myDevice.SetProperty(“myproperty”,“valuel”), will create the following element in your
Hydra Device XML:

<myproperty xmlns="hydra">valuel</myproperty>
You can then easily select devices in the network that has myproperty="valuel”.

For instance the following call with get an Hydra encoded URL to the Energy WS for the all devices
that has myproperty="valuel”.

m_applicationdevicemanager.GetHydraURLsFromXpath (".//* [name ()='myPropety' and .=’'valuel']" ,
"hydraidEnergyWs", "");

8.5 SDK components
The SDK provides a collection of templates, classes and browser tools for development of Hydra

applications. The SDK, and the DDK, are intended as integrated components in the Hydra IDE, to be
instantiated on two available platforms (.net Visual Studio and Eclipse).

The chosen way of integration is by mean of templates and by embedding selected tools.

Version 1.0 Page 138 of 157 30/04/2010

http://212.214.80.144:8080/ApplicationDeviceManager%3c/DACEndpoint

Hydra D12.9 - Final External Developers Workshops Teaching Materials

8.5.1 Application Project Templates

The project templates for Visual Studio gives the developer a way of creating a Hydra application
without having to write the boiler plate code necessary to set up the environment and finding the
end points for interacting with Hydra managers.

There are a number of templates available which cater for some typical development scenarios. The
basic difference between templates is which managers are directly available and which boiler plate
code examples are provided.

8.5.2 HydraBasicApplication
Creates a standard no thrills project that connects to Hydra managers.
Managers
- ApplicationDevice Manager
- Network Manager
Device types
- Hydra Device

8.5.3 HydraEnergyApplication

This template creates a project that contains the code necessary to monitor energy consumption for
a number of devices.

Managers:

- ApplicationDevice Manager
- Network Manager

- Event Manager

- Context Manager

- Storage Manager

Device Types

- Basic Switch

- Enhanced Switch

8.5.4 HydraDynamicApplication

This template creates a project that deals with devices at type level instead of binding to individual
devices, for instance interacts with all BasicSwitch devices available in a Hydra network. This is
useful when writing general applications which determine their devices in run time.

Managers

- ApplicationDevice Manager
- Network Manager

Device types

- None
8.5.5 HydraSensorApplication

This template creates a project that works with sensors using Events and gives the developer the
necessary boiler plate code for adding which sensors and events that it should work with.

Version 1.0 Page 139 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Managers

- ApplicationDevice Manager
- Network Manager

- Event Manager

Device types

- None
8.6 Tools integration

8.6.1 The DAC browser
The DAC Browser is also an integral component of SDK as part of the IDE as seen in Figure 92.

O Test - Microsoft Visual Studio - Experimental Hive T D [E=SEE
File Edit View Project Build Debug Data Tools Test Window Help
S-E-E-E a6 \ - -~ &1L P Debug ~ Any CPU - | @ - | RSB
& EeE| =2 |06 1385 QT
| Jif| ~ Program.cs| Start Page | ~ x [Hydra Bxplorer sl
£ ||/ g8 Test.HydraMain ~ §%Main(string[] args || =W Hyden Local Nebwork =
i = = .J_‘;g UNI-FO9A2C1C417
§ = “wa# ApplicationDeviceManager
= r.Expecti00Continue = false; < ApplicationServiceManager
:‘ = $98 Fuglesang
g e ApplicationDeviceManager
= | ¢ s FuglesangLight |
Sexvi e CNets Thermometer 1
z Heh s ora e S i) R e ApplicationServiceManager
e Printers
e Train
N —
s “ae Kaffebryggare
lézzietyr‘:lce!:ndpclnt (tvpeof (Eve T
e CNets Air Pressure
&) { Conscle.WriteLine(e.Message); } e FuglesangFan
) ‘< CNets Rain Sensor A
s i A [ETSolition Bxpl-. [53 Class View| [2] Hydra Explorer
Properties TEx
- .aceHIDWDesc (eventExamplen, address):
, 2231]
=
I 2 [
| | |
I < - ’
Pending Checkins T Ex
Checkln - Comments | @ - |21 | T [E]2
Name Change type
«
Ready

Figure 92: DAC Browser (upper right) in the IDE

It provides the same functions as the stand-alone version and in addition,
- Provides an IDE-view of all devices known to the Hydra Network

- Enables the developer to create proxies by selecting devices

8.6.2 The Device Ontology browser

Similar to the way developers can access the DAC, the Device Ontology is available in the IDE in a
seamless way. The Device Ontology tool is integrated the same way the DAC is integrated.

Version 1.0 Page 140 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
& Mozilla Firefox =13
File Edit Miew History Bookmarks Tools Help
G - C & [[E] httpifiocalhost:9998/a0ManagerClient2/Device Tree iface =1 7% - [[Gl]Gosgle P
Selected node: MobilePhone_1 (device)
Edit Generate Delete
HydraDevice (device) _+|INSTANCE:: device:MobilePhone_1 i
PhysicalDevice (device) « PROPERTY: [rdftype].
ProcessingUnit (device) o dEVlcé MubllePI’inne
MohileDevice (device) e PROPERTY: [device:isDeviceTemplate]:
0 java.lang Boolean:true =
MobilePhane (device) o PROPERTY: [device:deviceld)
MohilePhone_1 (device) o java.lang String:phone_1
HasEvent (device) * PRCLPIIENRST'I:;&[I%E;"Fz:ravsiizt\lglcf\lJSensorService 1
Testing_Default_KeyPushed_1 (event) = PROPERTY: [rdf typel; -
hasHardware (device) = service:FlowSensorService
MobilePhone_1_Hardware (hardware) " PRO_F‘ES/;BAZE&E; é?;z;ﬁzggﬁ::g;ﬂ!{
info (device) = PROPERTY: [service:hasOutput]:
InfoDescription_1 (device) I = INSTANCE:: servipe:savic_eoutput_z
hasService (device) & Pﬁqpfsszé[gi;.xgggumur
pliayvideo_3 (service) m PROPERTY: [service:parameterName]:
Fiosersarsendee_{ (sence) e RO et
deviceld (device) » java lang String:int
= phone_1 = PROPERTY: [service:hasValueRange]:
\il:ii\l/.lcETEmplate (device) il " I_NSTANC.E ..],.._.A, ‘_—’[ﬂ
Done N
Figure 93: The web-based Device Browser
This means that a subset of the functions from the current web based ontology tools interface is
available from within the IDE.
8.7 SDK Class library for .NET
The SDK Class library contains a number of ready-to-use Hydra Devices Types with corresponding
web services, which are available to developers.
8.7.1 Using the .Net DDK tools
There are two main tools for creating device code for .Net in Hydra:
e Intel Service Author for UPnP Technologies
e Hydra .Net DDK tool
The example device that we will create in this tutorial is an OBEX device for a smart phone.
8.7.2 Using Intel Service Author for UPnP Technologies

This tool is used for creating the service methods and producing an SCPD that will be used as input
for the final code generation.

Version 1.0 Page 141 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

-
[} Intel Service Author for UPnP Iechnolﬂles-— OEJ:_.me - ey 0 =hee
Eile Edit Help
5 5] Actions] Complex Types] Complex Type Primitives]
State Varable Name | Type | Evented | Infomation
EfetchURL string False
5 filelist string False
& filename string False
P& numberofiiles id False
&' path string False
5 rematefilename string False N

Figure 94: Producing SCPD window

The first step is to define the state variables that will be used by the service. State variables have to
be defined for all Input/output parameters used in the service. In this case there are a number of
state variables defined with their respective types.

The next step is to define actions, i.e. the methods that this service should support. This is carried
out in the “Actions” tab.

Version 1.0 Page 142 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

|___|
Ij; Intel Service Author for UPnP Technologies - O .;.. . S

Eile Edit Help
State Varables Actions | Complex Types I Complex Type F‘rim'rti\r&sl

| | Action Name | Arguments |
@ AddUploadFileMName string Filename
@ ClearlploadFileNames
i GetNumberOf RemoteFiles string path, i4 numberoffiles

GetRemateFile string remotefilename, string fetchURL
@ ListRemoteFiles string path, string filelist
@ UploadFiles

Figure 95: Action tab

There are a number of methods defined with their corresponding arguments. The methods are
added using the “Action Editor” which allows for adding arguments and defining in which direction it
is used.

FD-' Action Editor K E‘ﬂu
Action Mame
| GetRemat=File

Arguments A prgument _|
~bew® MName |remotefilename

4| #] variable
<k Name [fetchURL

4| _#| variable [fetchURL -]

Figure 96: Action Editor

Save the SCPD to file when finished for later processing in the Hydra .net DDK tool.

Version 1.0 Page 143 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

g' Save SCPD XML as...

m DemoDDK »

Organize v New folder

A -
3¢ Favorites = Name Date modified

Bl Desktop . HydraDLLs 2010-03-18 14:46 File folder

% Downloads .. SmartPhone 2010-03-18 15:28 File folder

%l RecentPlaces |2 . TVDevice 2010-03-18 15:25 File folder

.. Projects 2008 | Exceptions-DeviceBuilder.txt 2010-03-18 15:21 Text Document
. Projects 2005 =) services.xml 2010-03-18 14:45 XML Document
1 Hydra] TV.axml 2010-03-18 15:08 XML Document
.. Reaction

4 Libraries
@ Documents
J’ Music
[&5] Pictures
#¥ videos

i m

YT R C:\Users\ kool CNETNG\Desktop\DemoDDK\Obexxml

Save as type: [SCPD XML files (*xml, *.scpd, *.txt)

4 Hide Folders

Figure 97: Save file window

8.7.3 Using Hydra .Net DDK tool

The actual code generation is carried out in the Hydra .Net DDK tool. It is also where the actual
configuration of device type and other settings are done.

The first step is to “Add Device” by right clicking in the tools left pane.

[Hydra DOK
File Edit Help

Hydra Device Builder
0 devices, 0 services, 0 actions, 0 arguments, 0 events

Export Service Description...

Add Device

Figure 98: Add n;w device window

Version 1.0 Page 144 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

The next step is to edit the meta data for the device, i.e., device name, type, description etc.

(& Hydra DDK -
File Edit Help

Hydra Device Builder
1 devices, 0 services, 0 actions, 0 arguments, 0 events

4% SmartPhoneDevice

Device Information
Friendly Name SmartPhoneDevice
Root Device Type um: -upnp-org} i 1
Manufacturer CNet
Manufacturer URI http://www.cnet.se
Mode! Description Smart Phone with Obex
Model Name Smart Phone with Obex
Model Number 1
Product Code 1
Version 1

Device Icon

Set Large Icon... 120x120 image

-

Fi'gure 99: W{ndow for setting naae and other p;operties

Then one adds the service created in the previous section by right clicking on the device in the left
pane.

(} Hydra DDK - smartphone.upnpsg
File Edit Help
Hydra Device Builder
1 devices, 0 services, 0 actions, 0 arguments. 0 events
g8 = = 1 —
Add Service From File... D Confi
Add Service From Network... Device Fioiation
Export Service Description...
Friendly Name SmartPhoneDevice
Add Devies Root Device Type U prp 1
Remove Device
Aanuf: CNet
Manufacturer URI http://www cnet se
Model Description Smart Phone with Obex
Mode! Name Smart Phone with Obex
Model Number 1
Product Code 1
Version 1
Device lcon
Set Large Icon... 120x120 image
484gimage
‘

‘Fig_;ure 100: Adding service window

Version 1.0 Page 145 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

| Organize v New folder =~ Al @
A Favorites 2 Name ° Date modified Type Sip2
Bl Desktop . HydraDLLs 2010-03-18 14:46 File folder
8 Downloads L. SmartPhone 2010-03-1815:28 File folder
‘&l Recent Places 1. TVDevice 2010-03-18 15:25 File folder
1/ Projects 2008 || basicphone.upnpsg 2010-03-18 14:45 UPNPSG File
. Projects 2005 . Device Builder.exe 2010-01-18 00:08 Application
1 Hydra &) Device Builder.pdb 2010-01-18 00:08 Program Debug D...
1. Reaction [Device Builder.vshost.exe 2010-01-1510:33 Application =
|| Device Builder.vshost.exe.manifest 2007-07-21 02:33 MANIFEST File
4 Libraries L | Exceptions-DeviceBuilder.txt 2010-03-18 15:21 Text Document
5l Documents 3 hydraddk.zip 2010-03-1814:45 WinZip File
@ Music] Interop.Shel32.dll 2010-01-17 2345 Application extens...
[&5] Pictures I@, Obex.xml 2010-03-18 15:38 XML Document
B Videos a1 Service Author 2009-09-30 11:43 Shortcut
@ servicesxml 2010-03-18 14:45 XML Document
1% Computer || smartphone.upnpsg 2010-03-18 14:45 UPNPSG File ki
ﬁ Local Disk (C:) & TV.xml 2010-03-18 15:08 XML Document -
= RECOVERY (D) ~ i m]

File name: Obex.xml

Figure 101: Choosing a file in explorer

Now we have added the OBEX service and we can see all the methods in that service.

File Edit Help
Hydra Device Builder
1 devices, 1 services, 6 actions, 7 arguments, 0 events

(-8 SmartPhoneDevice

{3 ObexService G’ Service Information
Service Name ObexService
Service Type um:schemas-upnp-org:service::1
Service ID um upnp-org:serviceld:
Service Element Mode Escaping
‘@ AddUploadFileName Normal Auto
@ ClearUploadFileNames Normal Auto
;, GetNumberOfRemoteFiles Normal Auto
‘@ GetRemoteFile Normal Auto
‘@ ListRemoteFiles Nomal Auto
‘@ UploadFiles Nomal Auto

Figure 102: Obex service window

Finally generating the code for the Hydra device. Select the “File” menu and choose “Generate Hydra
Device”.

Version 1.0 Page 146 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
[Hyora DDK - smartphonex E=SEEE)
[Eile] Edit Help
[/ New
I Open... juments, 0 events
| Open from Network... —
| D c x

Append...
e Device Information
Save As... Friendly Name SmartPhoneDevice
Generate Hydra Device... Root Device Type um:schy -upnp-org:hy 1 |
Exit Manufacturer CNet ‘
| Manufacturer URI http://www cnet se
Model Description ‘Smart Phone with Obex
’ Model Name Smart Phone with Obex
Model Number 1
| Product Code 1
Version i
Device Icon
Set Large Icon... 120x120 image
eatimce
‘
Figure 103: Generating a Hydra device dialogue
In the code generation dialogue the project name and optional Namespace for the generated code
needs to be set.
ﬂ Code Generation —— L=l
General IFedufes l Advanced IGenetaotLogl
Target Platforn [:NET Framework Stack (C#) -
Project Name SmartPhone
Output Path C:\Users\kool CNETNG\Desktop\DemoDDK\SmartPhone
New Line Format |LF. UNIX style code v
Calling Convention None - Compiler default calling convention v
Library Code Prefix [1ub
Code Indention 1Tab v
Namespace
Generate the Hydra Device
Figure 104: Code Generation Window
A complete Visual Studio project is created with the necessary Hydra references.
The Visual Studio project can be opened now.
Version 1.0 Page 147 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

File Edit View Refactor Project Build Debug Datz Tools Test Window Help
~ Any CPU

G- - @ % G]9 - & - S5 b Debug
I W% b A

Toolbox v X

|El General

_~Main.cs| b

Bi

- | @ Anstallningsform="UA"
13 S B AR QL

'f@fﬁﬁ%ﬂ@':

l There are no usable controls in this group.
Drag an item onto this text to add it to the
toolbox.

jﬁ SmartPhone.SampleHydraDeviceMain

v % Main(string[] args) v

Solution Explorer - Solution ‘SmartPhone’ (... v I X

BREEA

E|[// UPnP .NET Framework Device Stack, Core Module

L// Device Builder Build#1.0.3670.267

B using System;
using Intel.UPNP;
using SmartPhone;

I

B namespace SmartPhone

{

/// <summary>

/// Summary description for Main.
/// </summary>

class SampleHydraDeviceMain

4

] »

mn

/// <summary>
/// The main entry point for the application.
/// </summary>

[

5

ead]

static void Main(string[] args)

{

// Starting UPnP Device

System.Cor le.WriteLine ("UPnP .NET Framework Sta:
System.Console.WriteLine ("Device Builder Build#1.!
SmartPhone device = new SmartPhone("1", "SmartPhon:

[Solution 'SmartPhone' (1 project)
- (& SmartPhone
5 | References
-+ DeviceServiceManager
- «3 HydraDevice
- «3 System
- «3 System.Data
- 3 System.ServiceModel
-3 System. XML
o «3 UPnP
] Assemblylnfo.cs
-] DvObexService.cs
) Main.cs
-] SmartPhone.cs

device.AddServices():
device.S5tart();

System.Console.WriteLine ("Press return to stop de Properties v EXx
System.Cor .ReadLine () -
device.St = ~
L . M I3 =)
< [} J 3
Error List > & x
IO 0 Errors]i I_AO Warnings“ |\|) 0 Messagsl
Description File Line Column Project
53 Error List [5] Output [Find Results 1 g Find Symbol Results | g§Pending Checkins |
Ready Lnl Coll Chl INS
=]

Figure_105: Hydra .Net-IDE

The device code is already runable since all methods are stubbed. The code should be changed in
the stubs to carrie out the actual device communication. The location of the stubs that needs to be
changed is in “Device name”.cs, i.e. SmartPhone.cs in this example. But in this case we will start the
device by opening the “"Debug” menu and selecting “Start debugging”.

Version 1.0

Page 148 of 157

30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

|| Eile Edit View Refactor Project Build Data Tools Test Window Help
@-E-ES @ % B9 ‘windows » ~ | @ Anstallningsform="UA" B R =N b i R
Start Debugging B D23 sazasnRl
Toolbox - EXx Start Without Debugging ~ Ctrl+F5 ~ x [Solution Explorer - Solution ‘SmartPhone’ (.. v & X
£l General Attach to Process... B2 S E &
\ ‘ = ~ 9 SmartPhone(string HydralD, string name, string vendor, + BlaE|ERA
. Exceptions... Ctrl+D, E - [Solution 'SmartPhone’ (1 project)
There are no usable controls in this group. | = Stack, Device Module [& (3 SmartP!
Drag an item onto this text to add it to the Step Into F11 70.267 =1 || R ”
PN e S B | References
tep Over L - -3 DeviceServiceManager
Toggle Breakpoint B T -3 HydraDevice
New Breakpoint » L3 -3 System
|) i -3 System.Data
9| Delete All Breakpoints ~ Ctrl+Shift+F9 @ System ServiceModel
Lusing System.ServiceModel; -3 System XML
E namespace SmartPhone - 3 UPnP
{] Assemblylnfo.cs
= /// <summary>] DvObexService.cs
Summary description forSmartPhone. &) Main.cs
r &) SmartPhone.cs
=) public class
1
=] public SmartPhone (string HydralID, string name, string vendor, string d
1
FriendlyName = honeDevice";
Manufacturer =
ManufacturerURL = "http://www.cnet.se";
ModelName = "Sm hone with Obex";
ModelDescription "Smart Phone with Obex";
ModelNumber = "1";
HasPresentation = false; - =
DeviceURN = schemas-upnp-org:hydradevice:smartphone: Properties %
Intel.Sample.D ce ObexService = new Intel.Sample Se -
ObexService.External AddUploadFileName = new Intel.Sample.DvObexSe =
ime Furawmal flaswiinlnadRilaNamas = nam Tnral Qammla Twiha | i
< i] v
Error List > ax|
[@ 0 Ermors| |1\ 0 Warnings| [(D) 0 Messages|
Description File Line Column Project

Figure 106: Hydra .Net IDE
The running Hydra DAC tool shows our newly created device with all its services. The relevant Hydra

services: HydraService, EnergyService, LocationService and Memory service were created. It is
shown that the Device is properly discovered and has all the Hydra properties such as HID.

Version 1.0 Page 149 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials
(@ = = -— = i |
File View Help i
(51448 Hydra Local Network Name | Value |
5! Gateway:Fuglesang Friendly name SmartPhoneDevice
= g] Hydra Devices Unique device name 20348e8a-2f63-438d-a538-ca82ddd0401
[Conmtmas e iU e
iy A lanufacturer p://www .cnet se
e E;g:fesang Light Model description Smart Phone with Obex
b bl . Model name Smart Phone with Obex
(SRS SmartPhoneDevice Seivices 5
. B-[3 Device Services Embedded devices 0
- Base URL http://212.214.80.153:50953/
Device URN um:schemas-upnp-org-hydradevice:smartphone: 1
[locationservice Remote endpoint 212.214.80.153:50953
" O memorysenvice Interface to host 212.214.80.153
Hydra Properties
i = StorageManager hydraidEnergyWs 0.0.0.8201972656552320364
- StorageManager gateway Fuglesang
}él Semantic Devices hydraidHydraW$s 0.0.0.3027665568248718642
' ()-8 Hydra Discovery Managers hydraidUPnPServic... 0.0.0.6338237092416293611
‘ [+ RFSwitchDiscoveryManager hydra?dDynamicWS 0.0.0.8720770957343744301
-+ SerialPortDiscoveryManager hydraidUPnP 0.0.0.274421292_2855945707
e‘ licati hydraUDN SmartPhoneDevice
9 Hyare Applcation energywsendpoint hitp://212.214.80.147:8080/hydradevice/20348e8a-2%63-438d-a538...
(#1159 Gateway BLIXA hydraidUPnPServic... 0.0.0.8554373993419907740
5 ‘i’ Hydra Extemal Network hydraidDynamicWS... SmartPhoneDevice:DynamicW$
Local Non-Hydra Devices hydraWSEndpoint http://212.214.80.147:8080/hydradevice/20348e8a-263-438d-a538...
e AXIS 206 (rev 2) - 00408CS0EQAD hydraidUPnPServic... 0.0.0.1621821071611816214
i e BLIXA: kool: sy‘r?nn:;syzgmewsn ghe %:nnel[?e'spatdﬁ;fd atvvtstp://212.214.80.147:808D/hyd|adevice.4.
:: % Wi s rai e... SmartPhoneDevice:Hydra
e LaCieOpenSpace : PVConnect: Windows Media | hydraidUPnPServic... 0.0.0.5204353651140766059
hydraidStatic WS
hydraidEnergyWSD... SmartPhoneDevice:EnergyW$s
status web service initiated
hydraidStaticWSDe... SmartPhoneDevice:StaticWS
hydraidUPnPDescri... SmartPhoneDevice:UPnP
DACEndpoint hitp://212.214.80.147:8080/ApplicationDevice Manager
dynamicWSEndpoint http://212.214.80.147:60403/
hydraidUPnPServic... 0.0.0.1397275492730682372
UPnPEndpoint hitp://212.214.80.153:50853/
< T] »
Figure 107: DAC with example SmartPhone device
Version 1.0 Page 150 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

Summary

Having sufficient training material and documentation along with the development of the software
components is an ongoing process. The details given in this document reflect the final status of the
software during the period of the project.

The HydraMiddleware will become an Open Source project, which means that the development is
not finished yet and that programmers form around the world use this version as a basis on which to
build applications and make improvements to the middleware itself.

A known fact is that technology will change and protocols and standards will arise which have to be
integrated in the Hydra layer. That means that the development of the training is also given into the
hands of future Hydra developers. Nevertheless a solid base is needed to create easy to use
documentation materials.

Along with this document there will be other ways in which to obtain information about Hydra and
its application development as a software middleware which includes a Software development Kit, a
Device Development Kit and an Integrated Development Environment.

The Hydra training material outcome will also include websites, APIs, online-webinars, how-to videos
and slides for the different views and functionalities of Hydra.

This material is aimed at software developers as well as business managers who have to decide
which software they want to use and to base their products on.

The D12.9 is aimed at external developers who are not familiar with the process of using the
HydraMiddleware to build powerful, useful and beneficial applications on top of it.

With the support and help by all partners in the Consortium this training material was developed. It
was also used among the current Hydra developers to integrate their components with the core of
the Hydra functionality.

This document is limited to text and figures and can not represent the whole training material which
will be used to support third party developers and support decision makers in their choices.

The further reading section and link collection at the end of this document should be used as a
starting point to get familiar with the overall Hydra concepts and different solutions which were
extended during the entire process of the core components and middleware development.

Version 1.0 Page 151 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

10. References and further Reading

(1]

(2]

(3]

(4]
(5]
(6]
[7]

(8]

(9]

(10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]
(18]
[19]

[20]

[21]

[22]

Version 1.0

Brinkmann, A., Effert, S., and Gao, Y. (2009). D3.12 Updated Grid Architecture
Report. Technical Report, University of Paderborn.

Ingstrup, M., and Zhang, W. (2008). D4.8 Self-star properties DDK prototype and
report. Technical report, UAAR.

Al-Akkad, A.-A., Kostelnik, P., and Zhang, W. (2009). D4.10 Quality-of-service
enabled hydra middleware. Technical report, Fraunhofer FIT.

Drools — Business Rules Management System. <http://labs.jboss.com/drools>
eXist-db Open Source Native XML Database. <http://exist.sourceforge.net>
OASIS - http://www.oasis-open.org

Sun XACML Implémentation. <http ://sunxacml.sourceforge.net>

eXtensible Access Control Markup Language (XACML) Version 2.0 (2005) -
http://www.oasis-open.org/committees/xacmil/

IBM, Web Services Security
http://www.ibm.com/developerworks/library/specification/ws-secure

W3C, XML Security Introduction
http://www.w3.0rg/2004/Talks/0520-hh-xmlsec/slide4-0.html

http;//www.osgi.org/Links/DeveloperKits

The SENSORIA Development Environment, CASE Tool for SOA Development
http://home.mit.bme.hu/~rath/ppt/SDE.pdf
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

http://www.mono-project.com

http://www.oscaf.org/nrl_ontolog]
http://protege.stanford.edu/plugins/owl/jena-integration.htmi
http://protege.stanford.edu/plugins/owl/api/guide.html

http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://www.w3.org/Submission/OWL-S
http://www.w3.0rg/2002/ws/sawsdl/

http://www.uddi.org/

M. Kostoulas, M. Matsa, and N. e. a. Mendelsohn. XML screamer: an integrated
approach to high performance XML parsing, validation and deserialization. 15"
international conference on World Wide Web, pages 93—102, 2006.

M. Shaw. Some Patterns for Software Architectures. Pattern Languages of Program
Design, 2:255-269, 1996.

Badii, A., et.al. (2010). D12.8 D12.9 - Final External Developers Workshops Teaching
Materials. Technical Report, UR.

Page 152 of 157 30/04/2010

http://www.oasis-open.org/committees/xacml/
http://www.osgi.org/Links/DeveloperKits
http://home.mit.bme.hu/~rath/ppt/SDE.pdf
http://www.mono-project.com/
http://www.oscaf.org/nrl_ontolog
http://protege.stanford.edu/plugins/owl/jena-integration.html
http://protege.stanford.edu/plugins/owl/api/guide.html
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://www.w3.org/Submission/OWL-S
http://www.w3.org/2002/ws/sawsdl/

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Ingstrup, M., and Zhang, W. (2010). D4.9 Embedded AmI components prototype.
Technical report, UAAR.

Version 1.0 Page 153 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Further information about the Hydra Middleware Project

Hydra Website http://www.hydramiddleware.eu

Hydra Public Deliverables http://www.hydramiddleware.eu/articles.php?article_id=90
Hydra in Wikipedia http://en.wikipedia.org/wiki/Hydra_Project_%28EU_Project%29
CNet Demo http://hydra.cnet.se

Version 1.0 Page 154 of 157 30/04/2010

http://www.hydramiddleware.eu/
http://www.hydramiddleware.eu/articles.php?article_id=90
http://en.wikipedia.org/wiki/Hydra_Project_%28EU_Project%29
http://hydra.cnet.se/

Hydra D12.9 - Final External Developers Workshops Teaching Materials

11. Glossary

This chapter aims to provide a comprehensive understanding of important terms used in and derived
from the Hydra project. In addition, the terms listed in this chapter try to convey a sense of their
application and present the background of the fundamental concepts. Even if some of the
subsections seem to be a repetition of things already documented, this chapter can be seen as a
central point of access to a description of the Hydra terms. The definitions listed here have been
agreed on by the Hydra Consortium. (The terms are ordered from high-level to low-level)

Physical Device:
A “Physical Device” is a common device that offers some functions that affect the “physical world”.

Such functions could for example be providing light, heat, wind, open door, or reports physical
properties such as temperature, blood pressure, pulse, movements, etc. Hydra constitutes a
middleware that enables networking of physical devices.

Appliance:

An “Appliance” represents a physical device that is dedicated to a single purpose. Appliances refer to
more complex physical devices and are especially prominent in the field of home automation or
home entertainment.

Hydra-Compliant Physical Device:

A “Hydra-compliant Physical Device” is a physical device that can be Hydra-enabled. Hydra-
compliant physical devices divide into 5 different classes (see Section 3) that determine the
procedure to be used to Hydra-enable devices and integrate them into a Hydra network. In the
smallest class, such devices need to offer some external interface for communication and control.

Examples of such external interfaces supported by the Hydra middleware are Bluetooth, ZigBee, RF,
RFID, serial ports, USB, etc.

Hydra-Enabling a Device:

“Hydra-enabling a Device” means the process of making the functions of a Hydra-compliant physical
device available and controllable for other devices in a Hydra network. Depending on its device
class, three methods make such a device Hydra-enabled:

¢ Installing (parts of) the Hydra middleware on the device
¢ Using the Limbo tools to embed Web Services on the device and generate a Proxy
¢ Using a Proxy to represent the device on a Gateway

At the end of this process the functions of this device can be invoked using Web Services, and
metadata about the device is provided in the format and protocol required by Hydra.

Hydra-Enabled Device:

A “Hydra-Enabled Device” is a Hydra-compliant physical device that has successfully run through the
Hydra-enabling process. A Hydra-enabled device owns a software representation, i.e. a Hydra
Device, in a Hydra network and

¢ Can be discovered by other devices in a Hydra network
» Makes all or a subset of its functions accessible as Web Services
» Offers its Web Services either natively (embedded code) or through a proxy

e Supports UPnP and advertises its entry into a Local Area Network through UPnP
broadcasting

» Supports Hydra Generic Services and Hydra Energy Service.

Version 1.0 Page 155 of 157 30/04/2010

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Hydra Device:

A “Hydra Device” constitutes the software representation of a Hydra-enabled device and its
functionalities, in order to enable access and control. The Hydra Device can either run as a Proxy for
the Hydra-compliant physical device on a gateway or it can run while embedded in the device. A
Hydra Device can obtain Hydra identifiers for its services (HID) and also application specific
identifiers. Furthermore, a Hydra Device implements the “Hydra Generic Services” and “Hydra
Energy Services”. For one physical device there might exist one or more Hydra Devices. A Hydra
Device might also incorporate services from several physical devices.

Semantic Device:

A “Semantic Device" represents a composition of one or more Hydra devices and constitutes an SDK
construct. A semantic device is dynamically bound to its Hydra devices at runtime. Therefore a
semantic device might only be partially instantiated at runtime. A semantic device is discoverable in
the same way as and also acts as any Hydra Device. The description of the semantic device is part
of the Hydra Device Ontology.

Gateway:

A “Gateway” is a physical device with IP capabilities, which manages a set of proxies for controlling
Hydra devices. A gateway must support Web Services and UPnP and should also be able to run
Hydra Discovery Managers. In addition, a gateway may also host other components of the Hydra
middleware.

Proxy:

A “Proxy” is a Hydra Device that consists of a software component responsible of communicating
with a physical device, understanding the technology used and the format of the data exchanged. It
is deployed on a gateway and represents the device to be controlled.

Bridge:

A “Bridge” represents a software component that resides inside a Gateway and translates any non-
IP communication into an IP based communication. It is used by Hydra-enabled devices with non-IP
capabilities to communicate inside the Hydra network.

Hydra Network:

A “Hydra Network” represents a network of Hydra Devices and applications that communicate with
each other using Web Services and IP communication on top of a Peer-to-Peer overlay.

Hydra Middleware:

The “Hydra Middleware” is a collection of interrelated components, i.e. Hydra Managers, that work
together to realise a platform of networked heterogeneous physical devices. The Hydra middleware
allows such devices to be part of an ambient intelligence environment.

Device Discovery:

The process “Device Discovery” covers several steps where a physical device is discovered,
semantically resolved and made accessible as a Hydra Device. In order for a device to be discovered
in a Hydra network, a definition of the device type must exist in the Hydra Device Ontology.

Hydra Manager:

A “Hydra manager” (or short "manager”) constitutes the major building blocks that make up the
Hydra middleware. A Hydra manager encapsulates a set of operations and data that realise a
specific functionality and is mostly subdivided into several internal components.

Hydra Generic Services:

The Hydra Generic Services are supported by all Hydra Devices and contain a set of meta-data
methods that can be used to query the device about its properties.

Hydra Energy Services:

Version 1.0 Page 156 of 157 30/04/2010

Hydra

D12.9 - Final External Developers Workshops Teaching Materials

The Hydra Energy Services are supported by all Hydra Devices and provide methods to retrieve
information from the energy profile of the device and from the energy policy.

Hydra Identifier (HID):

A “Hydra identifier” (or simply “Hydra ID” or shorter “"HID") constitutes a unique identifier for every
Hydra Device, service or resource within a Hydra network. The Network Manager generates the HID,
is responsible for the matching between logical and physical identifiers and for the propagation of
this information to other peers of the Hydra network.

CryptoHID:

An application developer has the opportunity to assign his own CryptoHID to a certain Hydra Device.
This CryptoHID can directly be used throughout the application code and referred to when
expressing security, energy and other policies.

Session:

A "Session” traces the communication between elements of a Hydra network, in order to keep the
communication coherent. Sessions allow the maintenance of the state of each network element as
they communicate with each other. The Network Manager comprises a dedicated Session Manager
that creates and maintains the lifecycles of the session objects.

Ontology:

An “Ontology” is a representation of the knowledge of a formally defined system of concepts and
relationships. In addition, an ontology can contain inference to derive new knowledge and integrity
rules to assure its validity. Therefore, an ontology forms a network of information and logical
relationsships described through a formal language such as the Web Ontology Language (OWL).

Hydra Device Ontology:

The “Hydra Device Ontology” is an ontology that contains knowledge about device classes, their
properties and services offered.

Device Model:

A “Device Model” describes the properties and services that a certain device class offers. The Device
Model is expressed using the SCPD XML format of the UPnP standard.

Hydra Peer-to-Peer Architecture:

The “Hydra Peer-to-Peer Architecture” allows Hydra Devices in different local Hydra networks to
access and communicate with each other. This means Web Services calls can be executed remotely
over a P2P overlay.

Version 1.0 Page 157 of 157 30/04/2010

