
The Hydra Project
Networked Embedded System middleware for

Heterogeneous physical devices in a distributed architecture

Final report 2006 – 2010

Published by the Hydra consortium August 2011

SIXTH FRAMEWORK
PROGRAMME

2 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

Copyright © 2006, 2011 - The Hydra Consortium

The Hydra Project has no independent legal status but is the result of work performed by a consortium of independent partners, temporarily
created with the aim to perform research work under contract with the European Commission.

Permission is granted to use material published in this leaflet for personal use only. Its use for any other purpose, and in particular its commercial
use or distribution, is strictly forbidden in the absence of prior written approval. Notwithstanding this requirement, material may be downloaded or
printed for use in connection with scientific work and reports and press reports on the activities of the Hydra Project and its partners.

The Hydra Project has made every reasonable effort to ensure that the content of this leaflet is accurate and complete. We do not give any
warranty in respect of the timeliness, accuracy or completeness of material, and disclaim all liability for (material or non-material) loss or damage
incurred by third parties arising from the use of content obtained from this leaflet.

Registered trademarks and proprietary names, and copyrighted text and images, are not generally indicated as such. But the absence of such
indications in no way implies that these names, images or text belong to the public domain in the context of trademark or copyright law.

Due to trademark conflicts, the name „Hydra‟ only refers to the research project called Hydra. The outcomes of the project are marketed as
LinkSmartTM middleware.

The Hydra project was co-funded by the European Commission within the Sixth Framework Programme in the area of Networked Embedded
Systems under contract IST-2005-034891.

For more information go to www.hydramiddleware.eu or www.linksmart.eu. Or contact our webmaster at webmaster@hydramiddleweare.eu.

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 3

From the Hydra Coordinator

I would like to welcome you in the name of the Hydra Consortium to this

document. It will provide you an executive overview of the very successful

Hydra project and its achievements and introduce you to the LinkSmart
middleware, its components, dedicated tools and the underlying concepts.

Hydra‟s project vision to create a middleware for networked mobile and
embedded systems allowing producers to develop cost-effective and

innovative applications for new and already existing devices is still valid

and extends from the area of Networked Embedded Systems, to Internet
of Things and cloud enabling. The very successful project has a large

impact in terms of introducing new technology concepts (SOA) to
networked embedded systems and the many approaches (self-

management, security, middleware) delivered by the project have been

copied and will be or are reused in many other projects.

In fact Hydra has delivered a comprehensive research roadmap for the

Internet of Things and Services and is directly impacting the present EU
RTD work programs. The impact can be seen in the number of new

projects for research work that have been accepted for funding by the EU,
included four very large Integrated Projects (i.e. ME3Gas (Artemis),

REACTION, ebbits and Bridge (Security)). All projects are based on the

LinkSmart middleware and the except for ME3Gas were ranked number
one at the evaluation. Even more projects related to Hydra have been

approved for funding and will follow (three more ranked number one at
the evaluation).

The very impressive results of the Hydra project will be maintained and

further developed by a non-profit foundation that will be led by involved
Hydra consortium partners and that will be open also for external partners.

You are welcome to join the foundation in order to push the open source
development of the LinkSmart middleware and to establish a supporter

community.

I wish you an insightful reading and look forward to interesting and fruitful

feedback.

Dr. Markus Eisenhauer

Fraunhofer Institute for Applied Information Technology

Schloss Birlinghoven, Sankt Augustin (near Bonn), Germany

4 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

From the European Commission

As part of the 6th Framework Programme for “Integrating and

strengthening the European research area”, the European Commission

launched the 2005-06 Work Programme in November 2004 [1]. The
changing environment for Information and Communication Technologies

(ICT) research called for a new approach. As ICT was becoming more
pervasive “we see their growing impact all around us, in the way we live,
work, play, and interact with each other. New ways of using ICT are at
the origin of innovations in most products, services and processes”.

The focus of IST in FP6 was on the future generation of technologies in

which computers and networks were to be integrated into the everyday
environment, rendering accessible a multitude of services and

applications through easy-to-use human-machine interfaces. This vision

of "ambient intelligence" places the user, the individual, at the centre of
future developments for an inclusive knowledge-based society for all.

One of the research focus areas in the Work Programme was the
“Embedded Systems” strategic objective with the aim to develop the next

generation of technologies, methods and tools for modelling, design,
implementation and operation of hardware/software systems embedded

in intelligent devices. An end-to-end systems vision should allow us to

build cost-efficient ambient intelligence systems with optimal
performance, high confidence, reduced time to market and faster

deployment.

A specific objective was to research and develop middleware and

platforms for building secure, fault-tolerant Networked Embedded

Systems where diverse heterogeneous physical objects cooperate to
achieve a given goal. While the developed technology must be generic, it

should be driven by an entire class of ambitious future applications,
covering not only information handling but also monitoring/sensing and

control. The middleware should thus hide the complexity of the
underlying infrastructure while providing open interfaces to third parties

for application development.

The Hydra project was highly relevant in this regard. The vision of the
Hydra project to create the most widely deployed ICT middleware for

intelligent networked embedded systems was fully in line with the overall
objectives of developing tools for design, implementation and operation

of software systems embedded in intelligent systems. The Hydra

middleware – LinkSmart - also provides significant reduction in time to
market and faster deployment of new types of devices and services. It

will further allow SME‟s, with little development capacity, to take
advantage of the growing market for intelligent devices and services.

Dr. Jorge Peirera

Hydra Project Officer

DG INFSO G3, Embedded Systems and Control

European Commission, Bruxelles, Belgium

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 5

Table of contents

From the European Commission Jorge Pereira, Hydra Project Officer ... 4

From the Hydra Coordinator .. 3

Executive Summary ... 6

A PROJECT METHODOLOGY BASED ON A USER-CENTERED DESIGN
APPROACH ... 7

WP2: Iterative user requirements engineering .. 7

WP3: Specification of the Architecture .. 8

TECHNICAL OVERVIEW .. 14

WP6: SoA and MDA middleware ... 14

WP5: Wireless networks & devices .. 18

WP4: Embedded AmI architecture .. 22

WP7: Trust, privacy and security ... 23

PROJECT IMPACT .. 27

WP8: System Integration: Device and Application Development Tools ... 27

WP12: Training .. 29

HORIZONTAL ACTIVITIES ... 31

WP9: User Applications ... 31

WP 10: Validation & business framework ... 32

WP13: Dissemination and Exploitation .. 33

WP1: Project Management ... 34

References ... 34

Hydra project partners .. 35

6 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

Executive Summary
This document is a summary of the final

report of the Hydra research project. It also
constitutes a technical description of the

Open Source LinkSmart® middleware for

networked embedded systems, which is the
official outcome of the Hydra project.

Due to trademark rights, the name “Hydra”
can not be used for the middleware when

marketed after the end of the project. So

the partners registered a commercial name
LinkSmart, which will be used throughout

this document to refer to post-project
artefacts, whereas Hydra only refers to the

project-related events and artefacts.

Background

The Hydra project researched, developed,

and validated a middleware platform for
networked embedded systems that allows

developers to develop cost-effective, high-
performance applications for heteroge-

neous physical devices.

The Hydra project was a 54 month research
and development project ending in

December 2010 with 12 academic and
industrial partners. The project was co-

funded by the European Commission under

the 7th Framework Programme.

Architecture

The middleware constitutes a software
layer between the operating system of

software enabled device and a user
application that communicates with that

device. The middleware provides protocols

that execute on top of the transport layer
and provide services to the application

layer. “Hydra Managers” constitute the
major building blocks that make up the

middleware. A Hydra Manager encapsulates

a set of operations and data that realise a
specific functionality.

The LinkSmart middleware offers a large
collection of reusable core software

components to experienced developers.

Based on these software components,
programming abstractions allow for

programming with well-known concepts
from the field of networked embedded

systems applications through reducing the
complexity and details of the underlying

implementation.

Technical features

The main technical components in the

LinkSmart architecture are:

 Service-Oriented Architecture
 Model-Driven Approach

 3-layered Discovery Architecture
 P2P-based Network Architecture

 Dynamic Runtime Architecture
 Context Management

 Self-* Management

 Security and Trust enabled
 Storage Management

All devices and services comprising the
middleware have been integrated in a

Service Oriented Architecture (SoA), which

effectively turns all devices into web
services and thus provides extensive

interoperability at the syntactic level, i.e.
the capability of components to talk to each

other regardless of the interface technology
and their physical locations, is achieved by

means of standard protocols from the world

of web services, e.g. XML, XSL-t, SOAP,
WSDL, XML Schema, WS-Security, WS-

Addressing and several others.

Due to the model-driven architecture, the

middleware employs semantic technologies

to manage metadata on devices and lower-
level protocols to semantically resolve new

devices as they enter a Hydra Network
during run-time and automatically generate

the software drivers for the web services.

The middleware distinguishes between
powerful devices that are capable of

running the Hydra middleware natively and
smaller devices that are too constrained or

closed to run the middleware. For the latter
devices, proxies are used and once proxies

are in place, all communication is based on

the IP protocol. Ontologies are also used
to create models of applications enabling

context-related semantic support.

Project Outcomes

The tangible outcomes of the project are:

 The Software Development Kit (SDK)

 The Device Development Kit (DDK)

 The Integrated Development

Environment (IDE)
 The LinkSmart Open Source Middleware

 The LinkSmart training package

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 7

1
A Project Methodology

Based on a User-Centered

Design Approach

WP2: Iterative user
requirements
engineering

User-Centered Design Approach

The Hydra project adopted an iterative

(evolutionary) requirement engineering,
specification and design methodology

underpinned by a strong user-centric
validation.

The methodology calls for comprehensive

iterative requirements and stakeholder
analysis based on initial requirements

derived from scenario thinking. These
requirements encompass the needs and

priorities of the developer users as well as
the wider diffusability and scalability

requirements. The scalability requirements

in turn had to take into account the
technical and networking operational

requirements as well as the testability,
evaluation, marketability and exploitation of

the middleware.

After the successful completion of a
prototype cycle, each RTD work package

analysed and reported their development
results, RTD experiences, lessons learned in

the development and integration work and
other relevant knowledge gained during the

development cycle. Moreover, knowledge

gained from formal testing and system
integration was collected together with

latest development in technology,
regulatory affairs and markets.

Once in every iteration cycle, the re-

engineered requirements were documented
in Change request re-engineering reports.

Overall, a total of 476 requirements were
resolved and integrated into the LinkSmart

middleware.

Requirements Engineering Process

The starting point of the iterative design

process was a set of domain-specific Vision
Scenarios delivering end-user visions of the

future use of Hydra applications in three
different domains: Building Automation,

Healthcare and Agriculture.

Figure 1 shows an overview of the iterative
approach.

8 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

Figure 1 Overview of the iterative software
development approach in Hydra

The Vision Scenarios were used to derive
technical and business oriented usage

scenarios that were discussed in focus
groups with developer users. The result of

this work was an initial set of requirements

specifications for the Hydra middleware.

From the initial set of requirements,

software experts specified the initial
architectural specification, which drove the

research and development work in
middleware implementation and system

integration. Software prototypes were

demonstrated and validated in domain-
specific settings with the aim to

demonstrate the outcome of each cycle to
developer users, end-users, project

partners, reviewers, the research

community, industry leaders, potential
customers, etc. All results from validation

and experiences gathered in the process
were collected and used to refine the

technical and business oriented scenarios,
the requirements specifications, the

middleware architecture as well as defining

the new prototype specifications.

For each prototyping cycle, the middleware

and the associated development tools
progressively got more and more advanced

as lessons were learned about developer

user and end-user requirements. Evaluation
of Lessons Learned from the previous

cycles was taken into account. At the end
of each annual cycle a set of prototypes

were developed with the purpose of

illustrating the following aspects of project
progression:

1. Concept prototype for proof-
of-concept

2. Software Development Kit

(SDK) Prototype, incorpo-
rating part of Building

Automation scenario

3. Device Development Kit

(DDK) Prototype, adding
further elements from the

Healthcare scenario

4. Integrated Development
Environment (IDE) Proto-

type, adding elements from
the Agriculture scenario

Vision and technical scenarios

The first step was to develop the end-user
Vision Scenarios for each user domain using

a Delphi methodology for scenario building
techniques. A series of one-day user

workshops for each user domain was
organised to bring together appropriate

expertise and experience. The Vision

Scenarios were used to derive Technical
and Business oriented User Scenarios that

were discussed in several focus groups with
experienced developer users.

The Vision Scenarios proved to provide

valuable input to the Technical Scenarios
and the requirements gathering process.

The Vision Scenarios were very useful for
deriving requirements, which fully explore

the uncertainties in long term projections in

domains with rapid technological progress.

WP3: Specification of
the Architecture
The Hydra middleware constitutes the
software layer in-between the operating

system and the applications. Another
characterization in terms of the ISO OSI

stack is that the middleware provides

protocols that execute on top of the
transport layer and provide services to the

application layer. The specification of a
appropriate system architecture for the

middleware faces a complex mix of

stakeholder, domain and technology
requirements, while at the same time it

should be as flexible, maintainable and
extensible as possible to support as many

future scenarios as possible. The
application of an iterative process for the

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 9

Hydra project guaranteed a continuous
update and revision of the system

architecture with each iteration, in order to

cope with such complexities.

The methodology applied for the

specification of the software architecture
was based on the standard IEEE 1471

"Recommended Practice for Architectural
Description of Software-Intensive Systems"

which defines core elements like viewpoint

and view. In order to implement and
execute this methodology, the specification

of the system architecture follows the
approach introduced by Rozanski and

Woods [2].

Structural Overview

The software architecture is an abstract

representation of the software part of the

Hydra middleware. The architecture is a
partitioning scheme, describing components

and their interaction with each other. The
upper-right part of Figure 2 gives a

structural overview of the middleware and
explains how the elements are logically

grouped together. “Hydra Managers”

constitute the major building blocks that
make up the middleware. A Hydra Manager

encapsulates a set of operations and data
that realise a specific functionality.

Figure 2 Allocation of Hydra Managers to Network
Components

10 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

The Hydra Managers are enclosed by the
physical communication layer and the

application layer shown at the bottom and

at the top of the diagram respectively. The
physical layer realizes several network

connection technologies like ZigBee,
Bluetooth or WLAN. The application layer

contains user applications which could
comprise modules like workflow

management, user interface, custom logic

and configuration details. These two layers
are not part of the Hydra middleware.

The Hydra middleware offers a large
collection of reusable core software

components to experienced developers.

Based on these software components,
programming abstractions allow for

programming with well-known concepts
from the field of pervasive and ambient

computing through reducing the details of
the underlying implementation. From the

bottom to the top of the upper-right part of

Figure 2, the middleware provides more
and more programming abstraction and

functionality for the developers:

 The Network Manager implements Web

Service over JXTA as the Peer-to-Peer

model for device-to-device communi-

cation.

 The Device Device and Device Service

Manager in a bundle implement a

service interface for a physical device,
handle several service requests and

manage the responses.

 The Discovery Manager automates and

facilitates the discovery of devices in a

Hydra Network.

 The Application Device and Application

Service Manager provide programming
interfaces and information for the

different devices to the software
developers.

 The Orchestration Manager supports the

composition of services and workflows

with a focus on energy efficiency
aspects.

 The Ontology Manager is used by the

Application Device Manager to get meta-
information about devices and also

semantically resolves what type of
device has been discovered.

 The Event Manager provides a topic

based publish-subscribe service in
Hydra.

 The Storage Manager realises the

persistent storage of information in the
middleware. The Data Acquisition

Component retrieves the data delivered

by the sensors (via push or pull mode)
and check the values for plausibility.

 The Context Manager allows for the

definition of an application-dependent
context model using key-value pairs or

OWL/SWRL ontologies.

 The Self* Manager provides support for

automating device management.

 The Quality-of-Service (QoS) Manager is

a component that accesses and

particularly processes all non-functional
properties-data for services, compo-

nents, devices, and network.

 The Crypto, Trust and Policy Manager
take care for cryptographic operations,

the evaluation of trust in different

tokens and the enforcement of access
control security policies.

Functional View

One to the major lessons learned during

the elaboration of the software architecture

was the strict following of design principles.
Due to the complexity of the Hydra

middleware and the large amount of
contributors, who introduce their new ideas

and conduct a constant refactoring of the

architecture, it is essential, to keep in mind
the predefined fundamentals for designing

the architecture.

Therefore, the specification of the Hydra

middleware architecture followed two
important design principles, which explicitly

influenced the software development

process: structured design and separation
of concerns. Both design principles aim at a

minimization of inter-component coupling,
and maximization of the intra-component

cohesion, in order to increase the

maintainability and understandability.

Inter-component coupling refers to the

width and complexity of the interfaces
between the components, and intra-

component cohesion refers to the affinity or
relatedness between the constituents of

one component. The software components

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 11

of the middleware are internally loosely-
coupled and show a strong cohesion among

their internal constituents.

These design principles have been
implemented in the functional view of a

software architecture which defines the
architectural elements that deliver the

system‟s functionality. The Functional View
contains functional elements, interfaces and

external entities:

 Functional Elements constitute well-

defined parts of the runtime system that
have particular responsibilities and

expose well-defined interfaces that allow
them to be connected to other

elements. A functional element can be a

software component, an application
package, a data store, or even a

complete system.

 Interfaces are specifications, defining

how the functions of an element can be

accessed by other elements. An
interface is defined by the inputs,

outputs, and semantics of each

operation offered and the nature of the
interaction needed to invoke the

operation.

 External Entities can represent other

systems, software programs, hardware

devices, or any other entity the system

communicates with.

Applied to the Hydra middleware, the

functional view defines the functional
capabilities of the middleware, i.e. what the

system is required to do.

Information View

During the constant evolution of the

software architecture, the communication
between the Hydra Managers turned out to

be non-transparent. The introduction of an
Information View tackled this lesson

learned, since it specifically answers

questions regarding what information is
associated with each manager, how this

information is represented and stored, and
how this information is exchanged between

the internal components of the manager.

The information view on the software
architecture required the modelling of data

in order to illustrate and specify the
composition of the middleware managers

and the communication between them. The

models relevant for the Hydra middleware
architecture are:

 Static Data Structure Model describing

what kind of data the managers need

for internal use and how this data looks
like.

 Data Ownership Model describing which

component is responsible for which
data.

 Information Flow Model describing

which data is exchanged between their
internal components and the managers

themselves.

 Data Lifecycle Model describing the

transitions that data elements undergo
in response to external events, i.e. the

way data values change over time.

Deployment View

The initial version of the software

architecture displayed a discrimination of
the Hydra Managers into device and

application elements. However, when
working with the middleware it became

clear that the managers can be deployed
on any kind of network node. Since the

Hydra components can be distributed over

many different network nodes, it is almost
impossible to specify an exact deployment

model with delimited application- and
device elements.

Thus, the deployment view on the software

architecture provides a set of best practices
that explain what a common Hydra

Network can look like (Figure 2). The
deployment view defines the physical

environment in which the system is
intended to run. This regards the selection

of managers required for the operation of

the desired application and the choice of
the platform the respective manager will

run on.

Integration of Devices in to a Hydra

Network

The network components, that are present
in a Hydra Network, comprise six basic

entities:

 Hydra-enabled device (HED): this is

a Hydra-compliant physical device that

owns a software representation, i.e. a
Hydra Device, in a Hydra Network. This

device is not required to have IP

12 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

capabilities or to host the Hydra
middleware.

 Bridge: this is a software component

that resides in a Gateway and translates

any non-IP communication into an IP
based communication. It is used by

Hydra-enabled devices with non-IP
capabilities to communicate inside the

Hydra Network.

 Proxy: this is a software component

responsible for communicating with a

resource-constrained device, under-

standing the technology used and the
format of the data exchanged. It is

deployed on a gateway.

 Gateway: this is a Hydra-enabled

device with IP capabilities, which hosts

proxies for resource-constrained

devices. In order to communicate with
such devices, a proxy running on the

Gateway is needed. In this way, these
devices appear as Hydra Devices in the

Hydra Network.

In order to determine the way of how a

new device is Hydra-enabled, i.e.

incorporated into an existing Hydra
Network, it has to be classified in one of

five different capability categories D0-D4.

This classification prescribes the

deployment procedure of (parts of) the

middleware. First, we have to check
whether the device can host the middle-

ware or not. If the device is not powerful
enough, it is a D0 or a D1 device. If the

device can host a web service and has IP
communication capabilities, it is a D1

device. Otherwise, it is a D0 device. On the

other hand, if the device can host the
middleware, we have to check if the device

in question supports IP communication. If
the answer is negative, we have a D2

device. If the answer is positive and the

device can control D0 and D1 devices in the
system, we have a D4. Otherwise, it is a D3

device.

The communication inside the Hydra

Network is performed between D2, D3 and

D4 devices, as they are able to host the
middleware and has IP communication

capabilities. D2 devices need a Bridge into
a D3 or D4 device, or to a dedicated server

to be incorporated in the all-IP Hydra
Network. D0 devices are controlled by

Proxies in the Gateways so they can be
accessed by other nodes in the network. D1

devices cannot host the Hydra middleware

but provide IP support. We can face two
different situations with this type of

devices: either we can embed a web
service on it or not. In the second case, the

developer has to create a Hydra service
using the DDK tools and contact the service

provided by the device directly. This service

is a Proxy that will be deployed on a
Gateway. On the other hand, if the device

allows embedding a web service in it, we
can use the Limbo tools provided by WP4

work to create a simple web service that

runs on the device. A client will be also
generated by the Limbo tool and it will be

integrated in a Hydra service. The
generated Hydra Proxy will be integrated

again as part of a Hydra Gateway.

Allocation of Software Components to

Network Nodes

Figure 2 shows the concrete deployment of
Hydra Managers on the specific network

components. Each device is connected
through the Network Manager. The

gateway/D4 device (top left) further hosts a

couple of proxies for D0 and D1 devices.
The application runs on a laptop as the

dedicated application device (i.e. a
centralized architecture). One or several

other network components may act as

gateways (Class D4 devices). A gateway
runs several Discovery Managers, which are

logically part of the Application Device
Manager. The Discovery Managers discover

non-Hydra-enabled devices (D0 and D1)
and makes them available within the Hydra

Network by providing a Proxy for them.

The Hydra OSGi Bundle Architecture

In order to implement the above mentioned

design principles, the OSGi Service Platform
has been applied to the Hydra architecture.

Through its strict component-based

approach, the OSGi implementation in the
Hydra architecture enables the

development with modular and
exchangeable software components. The

OSGi environment is responsible for
lifecycle management of components,

(local) service discovery, deployment and

dependency management of components.
Bundles can detect the addition or the

removal of services via the OSGi service

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 13

registry. The OSGi implementation in the
Hydra architecture applies these concepts

and realizes Hydra Managers in Java as

OSGi bundles.

Architectural Perspectives

During the constant evolution of the Hydra
middleware it became obvious that runtime

aspects need to be expressed and the
interplay of architecture components needs

to be demonstrated.

The introduction of new architectural
perspectives was one of the major

improvements of the last description of the
architecture specification. Rozanski and

Woods [2] propose and define several

perspectives on the system architecture
that ensure the quality properties of the

architecture are recalled in the process of
architecture specification. The architectural

perspectives address cross-view
considerations of these quality properties,

and thus, the description of the

architectural perspectives for the Hydra
middleware is based on functionality that

runs orthogonally with the views presented
earlier.

Each perspective covers sequence diagrams

of the messages sent between the Hydra
Managers participating in the process. Six

architectural perspectives were captured:
Communication, Device Discovery, Security,

Storage and Context Awareness, and Self

Management Perspective.

Validation of the Hydra Software

Architecture

For the final iteration of the Hydra project,

an assessment of the quality of the
software architecture of the middleware

was conducted. The demanded quality of

the software architecture was early
captured in requirements that requested

the compliancy of the Hydra architecture
with the OASIS Reference Model for

Service-Oriented Architectures and with the

Web Service Architecture (WSA). The
compliancy with both of these specifications

guarantees a high quality of the software
architecture specification.

The OASIS Reference Model for Service-
Oriented Architecture [3] is an effort to

define the concepts that make up a SOA

and it provides some guidelines that can be

applied to assess existing software
architecture. This reference model does not

describe implementation or architectural

patterns, but it aims at providing a common
semantics instead that can be applied to

any kind of SOA. Web Service Architecture
[4] (WSA) specified by the W3C Working

Group defines the architecture of a Web
Service based SOA implementation and

provides a huge set of concepts and

relationships to define all components of a
Web Service model in a very exhaustive

manner.

The concepts of SOA described by OASIS

can be identified in the Hydra architecture,

because it addresses the important
concepts of services, identification,

interaction etc. From the Web Service
implementation side, Hydra makes heavy

use of existing standards based on XML as
proposed by WSA. Using such common

standards like WSDL, UDDI, SAWSDL has

several advantages e.g. being compliant
with other application applying these

standards.

Nevertheless, WSA does not dictate the

usage of these technologies and Hydra

employs custom implementations if the
requirements call for new solutions. For

example, UDDI did not fit to the Hydra way
of having semantic devices and services in

highly dynamic environments. Thus, custom

implementations of service registry have
been developed

.

14 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

2
Technical Overview

The main technical components in

the Hydra architecture are:

• Model-Driven and Service-Oriented

Architecture

• 3-layered Discovery Architecture

• P2P-based Network Architecture

• Context Management

• Self-* Management

• Security

• Storage Management

• Runtime Architecture

WP6: SoA and MDA
middleware

Model-Driven and Service-Oriented

Architecture

All of the devices and services comprising
the Hydra middleware have been integrated

in a Service Oriented Architecture (SoA),
which will provide, among other things,

interoperability. The middleware thus
becomes the link between web services and

devices. Interoperability, which here is

taken as the capability of components to
talk to each other no matter what is the

technology used to implement them or their
physical location, is achieved by means of

the usage of many specifications in the

context of the web services world, including
XML, XSL-t, SOAP, WSDL, XML Schema,

WS-Security, WS-Addressing and several
others. To summarise, the main purpose of

the Service-Oriented Architecture in Hydra
is to provide interoperability between

devices at a syntactic level.

The Hydra middleware aims to interconnect
devices, people, terminals, buildings, etc.

As mentioned above, the Service-Oriented
Architecture and its related standards

provide interoperability at a syntactic level.

However, one of the goals of the Hydra
middleware is to provide interoperability at

the semantic level. This is achieved through
a semantic model-driven infrastructure,

whereby services exposed by devices can

be described and consumed by various
Hydra applications. The overall SOA and

MDA functionality is facilitated by:

 Device Modelling using Ontologies

 A Device Application Catalogue

 Automated Device Discovery

 Web Service Enabling of Physical

Devices

 Publish-and-Subscribe Based Event

Management

Device Modelling using Ontologies

The semantic model driven architecture

(MDA) is exploited both in design-time and
in run-time,

 At design time, developers are provided

with rich class libraries and semantic
descriptions in a Device Ontology.

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 15

 At run-time the middleware system uses

metadata on devices and lower-level
protocols in order to semantically

resolve new devices as they enter a

Hydra Network. The system is able to
automatically generate the proper

software drivers (Hydra devices and
service managers) providing a web

service interface to the devices.

Figure 3 Relations between the Device Ontology subsets

A main feature of the Hydra middleware is

to bring semantic web technologies down
to the device level, i.e., each device can act

as a semantic web service accessible by
other devices, users and software

applications.

In order to cope with the huge variety of
capabilities of the devices to be integrated

using the middleware, two broad options
can be considered: a) to force every device

to be compliant with some more or less

flexible interfaces, or b) to have the
middleware layer provide adaptation to

whatever interface the devices offer.

Since choice a) will probably not be

applicable neither to the present nor to the
future real world, the Hydra project has

opted for choice b) in such a way that the

middleware is able to adapt to the variety
of interfaces, information and operations

that devices offer.

In order to implement semantic inter-

operability, the middleware has introduced

descriptions for the devices in such way
that an automatic agent can understand

their capabilities and use them. Once the

semantic description of a device model has
been found, then its device capabilities can

be accessed.

Ontologies are used to model devices, their
services, capabilities, security requirements

but also the applications and parts of the
middleware itself.

The Hydra Device Ontology represents

concepts describing device related
information, which can be used in both

design time and in run time. The basic
ontology is composed of several partial

models representing specific subsets of

device information.

The initial device ontology structure was

extended from the FIPA device ontology
specification. The initial device taxonomy

was extended from AMIGO project
vocabularies for device descriptions.

The relation between the Device Ontology

subsets is shown in Figure 3

The components of the Device Ontology

can be shortly described as follows:

 Core Ontology (Device.owl): contains a

taxonomy of various device types and

the basic device description,
manufacturer and model information.

 Device Capabilities: represent the
hardware properties (Hardware.owl,

Network.owl) and software description
(SoftwarePlatform.owl divided into

DotNet.owl, Java.owl and

OperatingSystem.owl ontologies)

 Device Services (Service.owl): describes

the models of device services in the
terms of operation names, inputs and

16 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

outputs. The device services are con-
nected to the Quality of Service ontology

(QoS.owl, QoSSpec.owl, Unit.owl) used

to annotate the services and their
parameters to several quality factors.

The services of a device are further divided
in different categories, which are made

available to the developer in the DAC: a) a
generic set of services providing access to

various device and service metadata and b)

a number of device type specific services.

 Device events (Event.owl): provides the

descriptions of events, which can be
generated by the simple devices, as the

alternative of providing the functionality.

Events can be annotated to the quality
of service ontology in the similar way as

the services.

 Device Malfunctions (Error.owl):

represents the various types of errors
and failures which may occur when

using the device at run-time

 Self-* Properties supporting models:
models of state-machines tracking the

run-time device/service state changes,
model of device run-time

request/response tracking

(IPSniffer.owl, StateMachine.owl) and
SWRL rules supporting mainly the self-

monitoring and self-diagnosis processes.

 Security Ontology (securityMain.owl):

represents the various security

properties, such as protocols, algorithms
(securityAlgorithms.owl), objectives and

assurances (securityAssurance.owl),
which may be attached to devices or

services. To describe the security
properties, the third party NRL ontology

was reused, modified and connected to

the device model.

 Discovery models (Discovery.owl): used

for semantic resolution in the semantic
discovery process.

 Application model (Application.owl):

describes the model of application and
the entities used in various applications,

such as locations or persons
(Location.owl, Coord.owl,

SetLocation.owl, GraphLocation.owl)

The ontology architecture was designed to

support the maintainability and future

extensions of used concepts. The

ontologies have been developed using the
OWL language. The references between

more general and specific concepts and

modules (related ontologies) are realized
using the OWL import mechanism.

In design-time, every ontology module can
be further extended by creating new

concepts according to the needs of
representation of the new information

about new device types and models. The

concepts can also be further specialized.
For example, if a new device type is

needed, the adequate concept in the device
classification module can be further sub-

classed by more specialized concepts and

the new properties can be added.

The device ontology is populated using the

DDK tool, which is used to create new
device types (in terms of concrete device

models, e.g. an HTC3000 phone). The DDK
tool creates only basic device information

such as the manufacturer information,

services and device low-level discovery
information.

In order to enrich the device model
semantic description, the Ontology Manager

IDE has to be used to add all additional

device properties, such as events, hardware
or energy profile, security and QoS

properties. In this way, a device model
template is created. The Device templates

created at design time are used at run-time

to create application specific device
instances. Each time a new device is

discovered, the ontology is used to infer the
most suitable device template using

primarily the low-level discovery
information and the Ontology Manager

creates a device specific clone – a run-time

instance assigned to the concrete physical
device. Each physical device has its own

run-time instance. Once the physical device
leaves the network, the related ontology

run-time instance is removed.

The amount of additional information
added to device model enables the support

of various semantic queries used in
application logic or supporting the semantic

devices behaviour.

Ontologies are also used to create models

of applications enabling context-related

semantic support. The Ontology Manager
IDE behaviour is also driven by the

ontology model.

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 17

Device Application Catalogue

The Application Device Manager handles all

knowledge regarding devices that have
been discovered and are active in the

Hydra Network. The Application Device
Manager knows about devices from a

network perspective but does not handle
the locations or context of the devices. The

Application Device Manager's main

functions are discovery of new (and
existing) devices, semantically resolves the

device type and available services based on
the Device Ontology, creates a service

interface for the device, manages semantic

device descriptions, provides semantic
device aggregation and manages the

Device Application Catalogue (DAC).

Device Discovery is one of the major

functions of the Application Device Manager
and the aim is to discover new devices in

the network. It will support user-initiated

discovery as well as automatic schemes.
DAC keeps track of and manages all

devices that are currently active within one
application. It is a view on the Device

Ontology. It can be queried about existing

devices and their status. It can also provide
service interfaces for the different devices

upon request. The DAC will also keep track
of when the device entered the system,

when it was last heard of and its current
state.

The Application Device Manager is

responsible for generating a service
interface for a certain device. It will create

web services as well as UPnP services.

Web Service Based Device

Communication

Hydra based applications are built by
programming networked ambient intelligent

devices. Devices are
made programmable

by the middleware

through proxies as
well as by embedded

components.

Whatever the

method, it is
transparent to

developers, as they

access all devices
based on a pure

service and event
based programming model. In order to

support open and dynamic networks, the

device protocols need to provide
descriptions of the capabilities of the

supported devices. This includes device
identity and functional interfaces (services)

and possibly also additional information
such as details about the manufacturer, the

model and the version.

Powerful instruments for device modelling

and description are central in the Hydra
architecture, as in all networks of devices

and the “Internet of Things”. .

A Hydra Device is a software representation
of a physical device. This representation is

either implemented by a proxy running on a
gateway device, or, by embedded Hydra

Managers on the actual device. A Hydra

Device is said to Hydra-enable a physical
device.

Figure 4 Part of the device taxonomy

Figure 5 Event Management Scenario

Trend Display :

Subscriber

Average Display :

Subscriber

: Event

Manager

: Publisher

loop

[all subscribers to "/water/consumption"]

1: subscribe("/water/consumption")

2: subscribe("/water/consumption")

3: publish("/water/consumption", {"level"="2.3"})

3.1: notify("/water/consumption", {"level"="2.3"})

3.1.1: display()

3.2: notify("/water/consumption", {"level"="2.3"})

3.2.1: display()

18 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

Web Service Based Eventing

The Event Manager implements publish/
subscribe in the middleware. Publish/

subscribe is a (distributed) communication

paradigm in which senders (publishers) and
receivers (subscribers) of messages

(events) are loosely coupled through
decoupling in space, time, and

synchronization. Decoupling in space
means that publishers and subscribers can

reside in different processes or on different

nodes. Decoupling in time means that
publishers and subscribers do not need to

be running at the same time. Decoupling in
synchronization means that there are no

requirements on publishers waiting for

subscribers to receive messages or vice
versa.

The Event Manager provides decoupling in
space and synchronization through a

content-based publish/subscribe

mechanism. In this type of publish/
subscribe, subscribers subscribe on topics

and receive events that are published by
publishers on that topic through a

notification mechanism.

Figure 5 shows a typical interaction with

the Event Manager. In the scenario, a

Water Meter (a publisher) periodically
publishes its measurements on the topic

/water/consumption. The different user
interfaces (Trend Display and Average

Display) are subscribers and are notified

when the Water Meter publishes events.

WP5: Wireless
networks & devices

Device Network

The Hydra middleware distinguishes

between powerful devices that are capable
of running the Hydra middleware natively

and smaller devices that are too

constrained or closed to run the
middleware. For the latter devices, proxies

are used and once proxies are in place, all
communication is based on the IP protocol.

Figure 6 presents an example of a Hydra

Network and illustrates the two cases: On
the right we have a device terminal that

can host the middleware and is able to
establish communication with services on

the platform.

On the left, the devices cannot operate the

middleware (because they are too resource

constrained or have proprietary interfaces).
In this case, proxies are created on the

node (in this case a mobile phone). The
proxies virtualizes the device vis-à-vis the

platform. Any service will think it is

communicating with the device, where in
fact it is communicating with the proxy.

Figure 6 Communication inside a Hydra Network

Backbone
(IP-Network)

NM SM VM

LinkSmart - Midleware

NM SM VM

LinkSmart - Midleware

NM SM VM

LinkSmart - Midleware

WS (over IP)

W
S

 (
o

v
e

r
IP

)

WS (over IP)

WS (over IP
)

NM SM VM D2

LinkSmart - Midleware

D1 D3

LinkSmart Gateway

Non-LinkSmart

Enabled Device

Non-LinkSmart

Enabled Device

Non-LinkSmart

Enabled Device
Non-LinkSmart

Enabled Device

LinkSmart enabled Device

LinkSmart enabled Device

WS

WS

LinkSmart

Bridge

(IP to WIFI)

WS

WSWS
BT

WIFI

WS

WS (over WIFI)

Web Server UPnP

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 19

3-layered Discovery Architecture

The Hydra middleware provides a discovery

architecture that builds on UPnP

technology. The approach implements a
three layered discovery architecture that

includes physical device detection, UPnP
network announcement and semantic

resolution of devices against a device
ontology.

The model driven architecture (MDA)

implements the device discovery process.
This architecture is structured in three

layers abstracting the discovery functions.
The discovery process operates both locally

and remotely, so that devices that are

discovered in a local Hydra Network can
also be discovered in a peer Hydra Network

over the P2P protocol implemented by the
Hydra Network Manager.

Figure 7: The 3-layered Discovery Architecture is part
of the Hydra MDA

The lowest discovery layer implements the
protocol specific discovery of physical

devices. This is performed by a set of
specialized discovery managers listening for

new devices at gateways in a Hydra

Network. The second layer uses
UPnP/DLNA technology to announce

discovered physical devices in the local
network and to peer networks.

At the top-most layer the device type is

resolved against the Device Ontology and is
mapped to some Hydra Device type. It is

then placed in the Device Application
Catalogue (DAC). If an application

subscribes to events regarding this type of
device, it will be notified that the device is

available and has been placed in the DAC.

The middleware provides: 1) discovery
mechanism, 2) low level protocols, 3)

service execution, 4) virtualization, and 5)
security and trust policies which can directly

be used by the developer of applications.

The middleware incorporates support for
self-discovery of devices. When a Hydra

enabled device is introduced the
middleware is able to discover and

configure the device automatically.

20 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

P2P-based Network Architecture

The Network Manager implements the

Device to Device (D2D) communication

between middleware instances. In this
context, we define the communication as

data exchange between devices “inside” a
Hydra Network, which are Hydra enabled

and have IP communication capabilities.

In Figure 6 above was shown how Device

To Device communication takes place inside

the Hydra Network. This communication is
based on a P2P architecture, where JXTA

was chosen as the reference
implementation in which the D2D

communication will rely on. The Network

Manager is composed by different sub-
managers, named:

 Routing Manager, is in charge of

sending and receiving the information
packages between Hydra instances

 Identity (HID) Manager, manages the

service identifiers (HID and Crypto HID
in the Hydra Network)

 Backbone Manager, is in charge of

managing the P2P network

 Session Manager, manages the session

control in communications between
Hydra instances

The SOA is implemented using web
services, where information is encapsulated

in SOAP messages. Devices and

applications running the middleware offer
and consume services. Traditional WS

architectures are based on client-server
architectures, where the server is an

always-on end system with a well known
endpoint address, which should be known

by clients beforehand (using either service

descriptors or UDDI registries). However, in
a pervasive and distributed environment, all

device and service endpoints cannot (and
for security reasons should not) always be

known a priori.

In Hydra, a SOAP tunneling approach
proposes a way to replace the client-server

architecture for a distributed one, using the
Network Manager P2P platform. In this

architecture, all the peers will act as clients

and servers at the same time, and will be
able to offer and consume services in a

transparent manner.

Moreover, the Network Manager has been
extended to provide multimedia content

exchange between DLNA devices. This

functionality has been incorporated in the
Backbone Manager as the P2P network is

used for content transmission.

The Network Manager (on a device running

the Hydra middleware) acts as a proxy for
the DLNA devices, providing a similar

functionality as the SOAP tunnel but for

multimedia content, using JXTA sockets.
When a content request from a DMR

(Digital Media Renderer) device reaches the
Network Manager multimedia interface, it is

routed to the destination DMS (Digital

Media Server) using the overlay network
and the HID addressing mechanism. When

the request reaches the DMS the desired
content is returned to the DMR for playing

using the same communication path. Using
this functionality, any application running

on top of the middleware is able to search

for content on any DMS in the Hydra
Network and play this content on any DMR

device.

The structure of the Network Manager is

shown in the diagram in Figure 8.

Figure 8 Network Manager component diagram

Context Management

In the Hydra project, we use context

information, retrieved from sensors and put

together by low historic level context
information, in various parts of the

middleware and applications. Acquired data
is also used in the Policy Framework, as

input to Quality of Service (QoS) functions

and for enabling self-*-properties. For this

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 21

purpose, a Context Awareness Framework
(CAF) has been developed as part of the

middleware. The CAF is nota part of the

security architecture as such, but provides
essential information for a number of the

security mechanisms described below.

Figure 9 shows the Context Awareness

Framework. The graphical rule creation
application uses data provided by the

Device Application Catalogue (DAC) which

holds information about accessing the
devices, like method names and ids to

access them. The information put together
by the rule creation application is used as

an input to configure the Data Acquisition

Component (DAqC), a separate component
used by the Context Manager. Together

they form the Context Awareness
Framework.

The Context Manager models contextual
information and runs a Rule Engine to

perform the active situational awareness

and reasoning, as defined by applications.

It provides a query interface for

provisioning context as encoded XML. The

Data Acquisition Component retrieves the
data that is to be modeled by the Context

Manager.

The Rule Engine maintains the modeled

contexts in a blackboard-styled 'Working

Memory' architecture. Rules inserted into
the Rule Engine, and evaluate the modeled

context to trigger actions. The Rule Engine

used is the DROOLs Rule Engine, allowing
for object-oriented context modelling.

Additionally, the Rule Engine supports
Complex Event Processing, so that it can

support rules with temporal reasoning and
sliding windows over events.

Device Contexts are created in the Context

Manager once the Device Discovery process
between the Device Application Catalogue,

the Discovery Manager and the Ontology
Manager has been completed. The Context

Manager receives the resolved device

definition, from which the new context is
modeled, and then data from the device is

subscribed to.

Application Contexts are installed by the

application, containing the context
definition and a set of associated rules to

perform the application specific context

reasoning. These rules specify context-

sensitive actions as outputs, which include

publishing an event to the Event Manager

and calling a Hydra-enabled service.

The Device Discovery Manager identifies a

device by retrieving the services and
information provided by the device. It then

connects to the Ontology Manager, which

Figure 9 Context Awareness Framework

22 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

infers the device class based on the given
information and the device ontology.

Finally, the information is put in the DAC

and passed on to the DAqC.

The Data Acquisition Component has all the

information about the device to be
contacted and passes on the parameters

stored in the Device class, it can decide
when to contact the device and at which

frequency in order to get the latest status

information from the device and populates
the device class. Each time new

values/parameters are added to the device
class, this structured data is passed to the

Context Manager.

The Context Manager will contact the
Ontology Manager to update the object of

the corresponding ontology class with the
latest information that it has in-hand and

in-return the Ontology Manager sends the
Context Manager with the latest Context

Information related to the data being

updated (in other words, the Ontology
Manager sends information from classes

which are linked to the class being
updated). After obtaining the latest live

contextualized data, the Context Manager

sends the data to the Storage Manager,
which maintains the history of the device

status.

WP4: Embedded AmI
architecture

Self-* Management

For ambient intelligence systems to be

really useful, they arguably depend on the
ability to reason about and modify their

own state to adapt to context changes. As
an example, Quality of Service (QoS)

requirements may imply the need to keep a
system running for as long as possible

given that some devices may run out of

battery. As different communication
protocols have different QoS properties, in

terms of power consumption throughput,
reliability, etc., the prolonging of system life

can then be achieved through the switching

of communication protocols among some of
the devices in order to save battery.

To achieve this, the Hydra Self-* Manager
builds on the three layer self-management

architecture of Kramer and Magee as
shown in Figure 12.

Goal Management

Change Management

Component Control

change

requests

change

plans

status
change

actions

Figure 10 Hydra Three-Layer Self-Management
Architecture

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 23

These three layers (in order of
computational expense) are:

1. Component Control: The lowest layer is

the Component Control layer. It is
responsible for retrieving information

about the state of the system, e.g.,
which/what services exist and what their

states are. It is also responsible for
actuating low-level change commands

issued from higher layers,

e.g., installing and starting a
service. This is also the

layer in which actual
system/application services

run

2. Change Management: The
middle layer is the Change

Management layer. It is
responsible for detecting

situations that need to be
managed, and to perform

that management according

to pre-determined schemes
by issuing commands to the

component control layer. A
scheme in this context can

be a plan such as a set of

rules reacting on events
from the Component Control layer

3. Goal Management: The top layer is the
Goal Management or planning layer.

When a situation is detected for which

there is no applicable pre-existing
scheme in the change management

layer, the goal management layer is
responsible for computing a new

scheme, or plan, e.g., an AI planner can
be used to dynamically generate a

reconfiguration plan that is sensitive to

the constraints set by the current
system state and policies. Ideally, high-

level policies express how to create
plans.

A typical deployment is shown in Figure 12.

Communication between layers is done
using the Hydra Event Manager. Within the

Component Control layer, Architectural
Query Language (AQL) sensors implement

status sensing while Architectural Scripting
Language (ASL) interpreters implement

change actions. On the Change

Management layer, an OWL ontology
(SeMaPS) and supporting libraries model

the runtime context of systems. The

Reasoner component uses SeMaPS to
perform SWRL reasoning on runtime states.

Upon need for plan change, the Goal

Management layer Optimizer is invoked,
finding an optimized system state. The

Planner uses the current system state and
the optimized system state to find an ASL

script to take the system into the optimized
state.

Figure 11 Self-Management Deployment

WP7: Trust, privacy
and security

Security Framework - Access Control
Policy Framework

A foundational aspect of the security
framework architecture is the support for

access control at every layer of the

middleware. Hydra provides a dedicated set
of components for controlling access to

services provided at the middleware level,
realised as a dynamic, flexible and

extensible access control mechanism to
facilitate interoperability whilst ensuring

that only authorised principals are allowed

access to protected resources. Additionally,
the Access Control Policy Framework can be

utilised at application level.

The Hydra Access Control Framework is

policy-driven: access control policies are

used to define and enforce resource access
security. Hydra uses the declarative

eXtensible Access Control Markup Language
(XACML) format to define and evaluate

Change and Goal Management

<<component>>

Reasoner

<<component>>

SeMaPS

<<component>>

Planner

<<component>>

Optimizer

Component Control

Service <<component>>

AQL Sensor

<<component>>

ASL Interpreter

<<component>>

Event Manager

<<component>>

Event Manager

<<component>>

Reasoner

<<component>>

SeMaPS

<<component>>

Planner

<<component>>

Optimizer

Service <<component>>

AQL Sensor

<<component>>

ASL Interpreter

24 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

access control policies. The Hydra Access
Control Framework implementation realises

the sub-tasks of an access control policy

framework as defined in the XACML
processing model specification: policy

definition, policy administration, policy
retrieval, policy information, policy

evaluation and policy enforcement.

Figure 12 Access Control Policy Framework.

The Network Manager as the gateway

component for communication with Hydra

services / devices provides the natural point
of interception for the Access Control Policy

Framework. By intercepting communication
at each Network Manager, all Inside Hydra

communication can be evaluated before it
is forwarded on to the recipient and after
the communication has been securely

transmitted through Inside Hydra
communication. This is shown in Figure 14,

where the process begins when the
Network Manager receives a call to one of

it's hosted services. It forwards the

credentials of the call - Subject and
Resource HIDs with their associated

CryptoHID certificates, as well as the SOAP
Message payload - to the Policy

Enforcement Point, for a Permit / Deny

decision to be returned.

The Policy Enforcement Point (PEP)

formulates the credentials into an XACML
Access Request by parsing the SOAP

Message to extract the method of the
action call as well as the content of any

arguments. The PEP submits the request to

the selected Policy Decision Point (PDP),
which evaluates the Access Request against

XACML policies stored in a Policy

Repository, and returns a decision to the
PEP. While evaluating a request, policies

may refer to attributes that aren't present
in the request itself, but can be retrieved

from other sources, namely Policy
Information Points (PIPs).

Two PIPs were developed, as shown in
Figure 12, interacting with the Ontology

and Context Managers, to retrieve
attributes specified by access control

policies (e.g. Application Contexts). The
PDP features an extension mechanism, so

that additional PIPs can be easily

implemented and dynamically integrated
with a PDP at runtime.

The Access Control Policy Framework also
features an extensible Obligation handling

mechanism for handling obligations

specified in a policy. Obligations are
typically application-specific actions that are

to be taken in addition to enforcing an
access control decision, for instance logging

denied access requests. As with PIPs, these
can be easily created and added to the

middleware runtime. The middleware

bundles several default obligation handlers,
such as an obligation handler that fires an

event to the Event Manager for further
propagation and processing.

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 25

Storage Management

The Hydra Storage manager is designed as

a generic storage abstraction for storing

data over a Hydra Network, in which
devices or other applications shall be able

to access this storage. The architecture was
designed to support a wide area of storage,

e.g. block, file system or key-value storage,
each persistent or non-persistent.

Figure 13 shows the main components. The

Storage Manager is modelled as a device
responsible for any kind of configuration of

storage on a Hydra enabled device.

Figure 13 Basic components of Hydra Storage
Architecture

The storage itself can be accessed using
some kinds of storage device. Such devices

differ in the way they represent storage. A

Block Device can be used to access
sequential data stored in block devices or

single files. A File System Device could
provide data structured in files and

directories. Furthermore, a Database Device

can be used to access data stored in
databases.

The implemented devices are realized as
UPnP-Devices created by Limbo (web

service compiler), implemented in Java and
deployed as a set of OSGi bundles.

Figure 14 shows the implemented devices,

which can be used by the applications to
store data.

Figure 14 File System Devices

The Local File System Device is a very small
implementation that delegates the File

System Device API down to a local file
system (or a directory in a local file

system).

The Replicated File System Device and the
Striped File System Device take a number

of existing File System Devices as backend
storage. While the Replicated File System

Device mirrors all data on each backend

device, the Striped File System Device
distributes its data over the backend

devices without redundancy.

Hydra Runtime Architecture

Figure 15 below illustrates local discovery

of physical devices as well as P2P discovery
between two local networks and is

described by the following points:

 A Bluetooth phone comes into a local

network (lower right).

 The phone is discovered by the

Bluetooth Discovery Manager running on
site B. The Bluetooth Discovery Manager

extracts as much information from the

phone as possible and forwards it to the
Ontology Manager at site B.

 The Ontology Manager reasons and

concludes it has found a device of type
Basic Phone, it instructs the Bluetooth

Discovery Manager to create a proxy

and an interface for such a device.

 The BT Discovery Manager creates a

Hydra Device that consists of a Phone

DeviceManager and a Bluetooth Device

 Service Manager. The Hydra Device

exposes the phone functions (SendSMS,

ReadSMS) as web and UPnP services

26 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

 The Discovery Manager then dispatches

the Hydra Device and uses the Network
Manager to create a Hydra identifier,

HID, which is registered with the

Network Manager.

 The Hydra Device uses an UPnP

broadcast message to announce itself in

the local network The Hydra Device is
discovered by the Application Device

Manager, who updates the Device
Application Catalogue.

 The Hydra Device is now fully functional

and available for applications and other

devices in the local network on site B.

 The Network Managers in site B and in

site A are using P2P techniques to

synchronize their own databases of
Hydra identifiers.

 An External Discovery Manager is

running on site A and will discovery that

a new device has appeared on site B. It
uses the SOAP tunnelling mechanism of

the Network Manager A to query about
the device description of the remote

device. Network Manager B receives this
request and resolves it using its internal

HID database. It results in a local web

service call being made to the Phone‟s
generic Hydra Web Service.

 The result of the WS call is then

returned to the External Discovery

Manager at site A, which now has
enough information to create a local

proxy for the Phone on site B.

 In the same way this local Hydra Device

is discovered in the local network at site

A and registered in the DAC.

 One thing that now needs to be done is

to bind the Phone to a local application

identifier. Applications running in site A

needs to be able to refer to the devices
they need to use, without knowing their

physical address or IP-address. These
bindings are set up by the Application

Device Manager through a rule set

provided by the application developers.

 In this case the Phone is now bound to

the local identifier “Peters Phone” and

an application on site A can invoke
services on the phone referring to it as

“Peters Phone”. When the call SendSMS
comes from site A it is routed using P2P,

SOAP tunnelling and local web service

invocation on site B.

Figure 15 Discovery in the Hydra P2P architecture

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 27

3
Project Impact

The tangible outcomes of the

Hydra project are:

• The Software Development Kit (SDK)

• The Device Development Kit (DDK)

• The Integrated Development Environment

(IDE)

• The LinkSmart Open Source Middleware

• The LinkSmart training package

WP8: System
Integration: Device
and Application
Development Tools
The outcome of the Hydra project is an

Integrated Development Environment (IDE)

composed of two parts: (i) a set of tools
and class libraries for application

developers, called the Software
Development Kit (SDK), and (ii) tools

intended to facilitate for device developers

to make their devices Hydra compliant, the
Device Development Kit (DDK). The IDE

integrates tools on two main platforms,
Eclipse and .Net.

Whereas the SDK is focused on the

development of applications of devices, the
purpose of DDK is to adapt various physical

devices for use by application developers.
Many elements of the platform are of

course common to both the SDK and the
DDK.

As the Hydra name cannot be used for the

middleware after the end of the project due
to trademark rights, the registered

commercial name for the Hydra
middleware, LinkSmart™, will be used. The

project name of Hydra has also been

replaced in all parts of the software‟s
source code with the name LinkSmart.

The LinkSmart Software Development
Kit (SDK)

In practice the functions and tools of the
SDK support the application developer in

the following tasks:

 Finding available devices in the network

and initiate discovery.

 Browsing the device ontology.

 Learning about the capabilities of

devices, including their energy profiles,

through the DAC service listings and in
the Device Ontology.

 Initiating and adding devices to the

DAC.

 Defining an energy policy for the

application.

 Writing application logics based on the

services of devices in the DAC.

28 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

The main functions of the SDK are
implemented by

 A set of Application Templates

 The SDK Class library

 XML schemas for specific vocabularies

The main tools are the DAC Browser and
the Ontology Manager, managing the

Device Application Catalogue and the

Device Ontology respectively. Each
manager provides a graphical user interface

as well as web service API.

The LinkSmart Device Development

Kit (DDK)

LinkSmart Service Compiler (Limbo)
Web services are increasingly adopted as a

service provision mechanism in pervasive
computing environments. Implementing

web services on networked, embedded

devices raises a number of challenges, for
example efficiency of web services,

handling of variability and dependencies of
hardware and software platforms, and of

device state and context changes.

To address these challenges, the LinkSmart

Service Compiler has been developed. Web

Ontology Language (OWL) ontologies are
used to make the Service Compiler aware

of its compilation context, such as targeted
hardware and software. At the same time,

knowledge of device details, platform

dependencies, resource/power consumption
etc. is built into the supporting ontologies,

which are used to configure the Service
Compiler for generating resource efficient

web service code.

Device Creation
The main tools used when creating device

code in LinkSmart are:

 Intel Service Author for UPnP

Technologies

 LinkSmart .Net DDK tool

 The Ontology Manager

The Service Author is used for creating the
service methods and producing an SCPD

that will be used as input for the final code

generation. The actual code generation is
done in the LinkSmart .Net DDK tool. It is

also where the actual configuration of
device type and other settings are done. In

this process the Device Ontology is used to
select the device type of the device using

the ontology class browser. A complete

Visual Studio project is created with the
necessary LinkSmart references and the

device template is added to the ontology.

In the ontology manager tool we can see
the information that was added to the

ontology by the DDK for the device
template.

The LinkSmart Integrated
Development Environment (IDE)

The final outcome of the project is the

Integrated Development Environment (IDE)
which provides an integrated entity with

functions and tools from the SDK and DDK,
complemented by additional functions and

interfaces of the IDE. The IDE integrates

tools on two main platforms, Eclipse and
.Net.

The LinkSmart Open Source
Middleware

LinkSmart has thus been published under
the well-recognized and respected Lesser

GNU Public License (LGPL). This license

differs from the infectious GNU Public
License (GPL) in that the software may be

used as a library even in commercial
software. LinkSmart itself, however, has to

remain open and be free of non-free

software. Changes to the LinkSmart
middleware must be made public

themselves. All source files have been
updated with a license notice. The

LinkSmart code base has been cleaned up,

removing software libraries under licenses
incompatible with the LGPL.

In the beginning, LinkSmart will be hosted
and distributed through renowned

Sourceforge.net. Hosting is free but
commercial use is prohibited. The website

http://linksmart.sourceforge.net/ has been

created for this purpose.

Releasing the Hydra project's software code

base as a promising open source project
involves more than putting a Zip file with

the sources on a publicly accessible server

on the Internet. Although such solution
could be understood as fulfilment of the

project‟s open source delivery obligation, it
would not be in the sense of the European

Commission or the research consortium,
who wants to contribute significantly to the

state of the art. A trivial way of publishing

the software, without support or an
infrastructure that embraces future change

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 29

and bug fixing, would mean that the code
is “dead on arrival”, useless to software

developers and our fellow researchers. For

a convincing release, however, there is a
multiplicity of different problems and

competing goals that must be brought in
line.

First, one important aspect was to eliminate
the legal conflicts that can arise from using

certain third-party software inside

LinkSmart, be it proprietary software or
open source libraries. These third-party

licenses can also restrict the licenses under
which LinkSmart can be published. Second,

LinkSmart's software license should permit

future and other current EU projects to
freely use the software. Next, there is a

legal risk associated with damages caused
by malfunctions and failures of the

software. Contributors to the software as
well as parties that distribute the software

are generally liable for damages. An “as is”

clause in the software's license is only
partially effective. The publication strategy

of LinkSmart should therefore reduce legal
risks for research consortium members.

An open source publication typically gives

anyone the right to use, change, and re-
distribute the software on their own terms.

However, the consortium partners still have
an interest on integrating the software with

their businesses. They want to use the

software themselves. But also consulting,
contracted development, and selling of

software licenses are additional ways to
exploit project results. The open source

license has to be compatible with
exploitation plans.

Yet going open source means not only risks

but also opportunities to harness the
enormous capacities of a skilled open

source community that makes contributions
free of charge. Also, if other projects that

use LinkSmart donate their changes back to

the project, large synergies between the
projects are unleashed. It is important to

attract free developers and other projects,
and avoid annoying these supporters, for

example by publishing under an Open
Source Initiative (OSI) certified and

internationally accepted license, by

providing high quality code, or by keeping
entry barriers to usage low.

The LinkSmart Association

The LinkSmart consortium members have

founded a non-profit LinkSmart foundation

that supports the future development of the
LinkSmart smart, and takes care of the

required infrastructure. Until this is legally
established, agreements between the

partners govern liability issues. A
“contributor agreements” has been signed

by partners and other contributors to

transfer software copyrights fully to the
LinkSmart foundation.

The LinkSmart Association‟s activities shall
be driven by the promotion of scientific

exchange and information between

universities, institutes, enterprises and
organisations in the field of networked

embedded systems and Internet of Things
and the maintenance and further

development of the middleware resulting
from the Hydra project.

In order to be active in the Association, it is

necessary to become a member. Member-
ship is open to all legal entities of public or

private law that agree to the Association‟s
objectives, feel committed to those

objectives and can credibly demonstrate

that they are in a position and willing to
contribute to those objectives. Membership

carries a membership fee to be determined.

The membership entitles the members to

have a preferential status and the original

consortium partners will provide various
services to the members free or at reduced

rates. The LinkSmart Association can be
contacted at http://association.linksmart.eu

Proprietary results of the project

The Integrated Development Environment

(IDE) including the Software Development

Kit (SDK) and the Device Development Kit
(DDK) contains various proprietary

components of the consortium partners,
which are not released as Open Source.

Please consult the LinkSmart website for

more information on what the project
partners can offer in terms of software

tools and consultancy services. The website
can be found at http://www.linksmart.eu.

30 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

WP12: Training
The objective of training is to guarantee the

long-term impact of the Hydra project,
through comprehensive training of the

different target audiences. These audiences

include consortium members, device &
software developers and business

development managers.

Throughout the course of the project,

training workshops aimed at device and

application developers were held. These
workshop events aimed at providing

'hands-on' training, with
technical documentation,

tutorials and practical

examples for attendees.
Typically, these

workshops featured
extensive Q&A sessions,

where attendees could
target the information

most important to them.

Finally, training sessions
for business development

managers were held
giving a high-level

overview of the benefits

that the LinkSmart
middleware provides.

These sessions also
presented business

modelling challenges,
together with solution

approaches related to the

Internet of Things and
Services scenarios enabled by the

LinkSmart middleware.

In the final year of the project, six training

workshops were successfully held in various

European locations including Italy, Sweden
and Germany. Some of these workshops

contributed to the dissemination of the
project, through the training of the partners

involved in new projects with members of

the project consortium, that are based on,
use, or extend the LinkSmart middleware

Furthermore, to support the open source
publication of the LinkSmart middleware,

an e-Learning website has been created.

Figure 18 shows the created e-Learning
platform, which uses Moodle. The e-

Learning website provides a central point of
access for all learning objects generated

over the course of the project, including
documents, APIs, presentations, FAQs,

screen casts / videos, tutorials and

downloadable examples. It provides a
personalised learning experience based on

the perspective of the user.

Figure 18: Hydra e-Learning platform

The aggregated training materials cater for

multiple audiences, from business
managers to device / software developer

who wish to use the middleware, but also
for open source developers that would want

to learn and develop it further. For

example, Business Managers are presented
with the information most critical to them

to evaluate the LinkSmart middleware,
whereas device / software developers are

provided with in-depth technical learning
and training material.

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 31

4
Horizontal Activities
In addition to the research and

development activities, the project

carried out various horizontal activities:

• User Applications

• Business Models

• Dissemination

• Project Management

WP9: User
Applications
Three specific user application market

segments (domains) have been identified

and investigated. The definition of market
segments has been important to focus the

project‟s activities on segments which seem
to be more attractive than others and which

have a deep interest in the project‟s results.

Building Automation: The demand for

innovative devices wired and wireless,

mobile and stationary is boundless. Fast
growing technology areas include energy

efficiency, building automation, smart
homes, media capture and playback and

communications. These areas will continue

to be among the highest growing areas due
to new standards and formats and smaller,

more capable devices. Software content will
increase as more features are packed into

smaller devices and new needs for energy
and environmental controls will emerge.

Healthcare: The market for telemedicine

equipment and application is large and fast
growing, driven by a rapidly aging

population in the developed world and the
need to manage their healthcare efficiently.

Telemonitoring can support patients and

health professionals. Its use can allow
symptoms and abnormal health parameters

to be detected earlier than during a routine
or emergency consultation, and corrective

measures thus to be taken before more

serious complications appear.
Telemonitoring has already been

acknowledged as valuable tools in disease
management in several clinical areas.

Agriculture: Embedded Systems in the
agricultural environment usually have

communication abilities that guarantee the

possibility of remote control, supervision
and management of physical data (e.g.

meteorological parameters) and operational
procedures (e.g. the use of fertilisers and

other chemicals to preserve farming

products). The growing need to manage
the environmental impact of agriculture –

e.g. minimising the use of pesticides,
controlling the use of irrigation – and the

public demands of traceability will result in
a expansion in the use of ICT in agriculture.

32 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

WP 10: Validation &
business framework

Business Modelling

An integral part of the Hydra project was

the analysis and development of realistic
business model for developer users and

service providers. New research into
defining and measuring value creation in

dynamic constellations based on LinkSmart
middleware was needed. This should lead

to innovative business structures involving

content providers, service providers, device
manufacturers, and system integrators in

collaborative efforts. The goal was to
provide the business models, which can be

used for customers and users of the

LinkSmart middleware, and to instantiate
them in realistic, sustainable business cases

in the selected domain.

As the name indicates, value modelling

focuses on value creation; how value is
created, by whom and for whom. It is thus

foremost a strategic tool with the aim of

identifying new business opportunities and
how the firm can position itself strategically

to derive maximum benefits from new and
emerging opportunities. Value modelling is

thus very suitable for engineering radical

strategic changes including new product
strategies and organisational

infrastructures. However, it does not
provide much help in defining the most

optimal business process implementation.

Value modelling was found to be very
useful for analysing and describing the

strategic intent of actors in the business
environment, because it focus on the value

propositions, the value of the offerings to
other actors, and thus lays open the

strategic foundation for business decisions.

Converting a business model into a real
business case would use the process model

approach in order to identify how processes
should be carried out and by whom and

thus leading the way to the establishment

of realistic revenue models.

Business modelling was performed in each

domain: Building Automation, Healthcare
and Agriculture.

In the building
automation domain,

the idea of installing

LinkSmart middle-
ware into home

automation infrastructure was introduced.
Through various discussions and workshops

with external experts the focus within the
building automation domain was adjusted

to the topic of intelligent energy

management in a home automation setting.
The integration of so called smart meters

into home automation infrastructures
interconnected and enabled by the

LinkSmart middleware is seen as a big

opportunity to optimize energy
consumption on device level and to gain

more energy efficiency in buildings.

In Healthcare, the

application areas
are almost un-

limited and specific

implementations
will be determined

by actual customer requirements at the
time of deployment. The business

modelling work successfully focused on

telemonitoring using the LinkSmart middle-
ware and created sustainable business

models for a monitoring platform that
connects sensors and devices in the

patients‟ sphere with healthcare

professionals and informal carers as well as
emergency and crisis management teams in

the carers‟ sphere.

The future of LinkSmart in the Agriculture

domain is in the interoperability assured
from the middleware in order to apply

effectively the remote sensing control of

the farm appliances and monitoring
devices. In the

context of a future
typical crop or

livestock manage-

ment application,
the network shall

be connected with
the LinkSmart middleware that integrates

the bi-directional gateways, the information
flow and the sensor networks. The

application is able to provide an instant

overview of the farm situation and retrieve
and analyse data and elaborate complex

algorithms offering support decision tools.

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 33

Validation Process

The project‟s validation objective was to

show the effectiveness of the middleware

and prototypes from the point of view of a
software developer. The aim was that the

developer should be able to easily deploy
applications based on the middleware.

A validation framework was developed early
in the project to serve as a baseline for

how, when and by whom validation was

going to take place and a validation plan
was developed for each prototype. The

validation methodology consisted in the
verification of to what extend the fit

criterion for each requirement had reached

the threshold level, or whether the
requirement had been partly met or had

not been met.

105 requirements out of the total of 476

requirements were assessed in the three
validation cycles (assessment started in the

second year). The overall validation showed

that 95% of the selected requirements had
been fully implemented and 5% had been

partly implemented.

WP13: Dissemination
and Exploitation

Dissemination

To reach a high awareness among different
target audiences and to promote the

commercial exploitation of project results it
was essential for the Hydra project

consortium to follow a clearly predefined

dissemination and exploitation strategy.

The dissemination aim was to achieve high

quality results and high publicity among the
scientific community by concentrating on

first class conferences and renowned
journals. Despite the focus of dissemination

was shifted from quantity to quality

objectives in the course of the project a
large number of conference papers,

reviewed articles and a book chapter were
published. Also contributions to various

roadmaps and position papers as well as

teaching material (both written and on-line)
were issued.

At the time of writing the official Hydra
project website is having more than 2.000

unique visitors per month and more than

450.000 page hits singe the start of the
project. The 5 most popular papers in the

download section have been downloaded

altogether more than 11.500 times.

Furthermore, a newsletter has been

published every six months during the
project. Each newsletter has been sent to

more than 400 commercial and scientific
contacts. The newsletters are also available

for download from the Hydra project

website. More than 3.600 downloads have
been registered in total for the newsletters.

The various demonstrator showcases and
prototypes of the LinkSmart middleware

that have been developed in the course of

the project show clear and relevant real-
world use cases in three application

domains. The prototypes have been
presented regularly to business related

audiences at several high-class fairs like
CeBit, GSMA Mobile Summit, as well as high

class conferences, open days and customer

business workshops.

The project has been mentioned in press

reports all over the world including China,
Australia, USA and Canada. The Hydra

project was also mentioned on television.

The German TV channel ZDF has featured a
Hydra report on its show “Drehscheibe”.

The project also received medals and
honorary statements at the CeBIT fair and

at the large ICT2008 conference in Lyon.

All in all, the Hydra project was very
successful in dissemination and a lot of

positive feedback was achieved from the
audience at several high class events. All of

the predefined dissemination targets could
be met very successfully.

Exploitation

With the agriculture, building automation
and healthcare sector three domains were

identified as demonstration domains.

Several exploitation opportunities have

been identified in the three domains, e.g.

building automation, healthcare, and
agriculture. The project partner CNet has

introduced a commercial application called
“EnergyInBalance” which allows users to

monitor the energy consumption of
individual devices and appliances in their

home. In the healthcare domain, In-JeT

has launched LinkWatchTM, a commercial

34 Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture

telemedicine platform for patient
monitoring and feed back. There are

currently several applications for mobile

phones under development in order to
remotely monitor health data from a body

sensor network of a person. TNM, an IT
service provider from Denmark, plans to

integrate the LinkSmart middleware in a
farm management solution.

Clustering

In terms of policy framework, the project
has delivered a comprehensive research

roadmap for the Internet of Things and
Services and is directly impacting the

present EU RTD work programs.

The impact can also be seen in the number
of new research projects that have been

accepted for funding by the EU, including
two large Integrated Projects (REACTION

and ebbits), several STREPS, Artemis
projects (BEMO-COFRA, Bridge, SeemPubs)

and CIP-PSP projects (InCASA). All projects

are proposed by partners in the Hydra
consortium and are based on the LinkSmart

middleware. All proposals were ranked as
number one or two at the evaluation.

Several other projects related to the

LinkSmart middleware have been approved
for funding with other partners.

References
[1] Work Programme 2005-2006, European
Commission, 2004

[2] Rozanski, N. and Woods, E. (2005): Software
systems architecture: working with stakeholders using
viewpoints and perspectives, Pearson Education

[3] OASIS Reference Model for Service-Oriented
Architecture, http://docs.oasis-open.org/soa-
rm/v1.0/soa-rm.html

[4] Web Service Architecture (WSA) specified by the

W3C Working Group, http://www.w3.org/TR/ws-
arch/

[3] Moodle (http://moodle.org/) is an Open Source
Learning Management System (LMS)

WP1: Project
Management
The Hydra project was managed by a

Project Manager elected from one of the

partners. After the end of the first year, it
was decided to transfer the management of

the project to partner Fraunhofer FIT. FIT‟s
successful project management activities

ensured that the project properly
coordinated its multi-party, multi-

disciplinary approach and that the work

was completed within the terms of the
contract with the European Commission.

A Project Management Board, consisting of
one representative member from each

partner, was vested with the executive

authority for the overall management and
running of the project, and the resolution of

any major problems that arose.

The Project Manager was assisted in the

management task by a Technical Manager
appointed from partner CNet and the

chairman of the project‟s Technical Board,

from In-JeT.

The management structure ensured that

the technical and quality requirements of
the project were fully implemented, that

resources are deployed in an optimum way

An industrial advisory board was
established with members from Nokia,

Motorola, Siemens, and TNM. All members
showed great interest in the project results

and contributed positively to the

identification of exploitation routes.

In the final year of the project it was

decided and agreed to prolong the duration
of the project from 48 months to 54

months to allow for the finalization and an
in-dept quality check of the middleware in

preparation for the following exploitation

phase as LinkSmart.

Hydra - Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture 35

Hydra project partners

Fraunhofer Institute for Applied Information Technology

The “Information in Context Group” (ICON) has an acknowledged reputation in the
areas of context-awareness, adaptive systems, context modelling, mobile services.
www.fit.fraunhofer.de

DE

CNet Svenska AB

CNet is a software house specialising in semantic-based knowledge and content
systems with semantic interoperability between heterogeneous services.
www.cnet.se

SE

Fraunhofer Institute for Secure Information Technology

SIT is one of the pioneers within the field of IT-Security in Germany and Europe and
has experience in development and promotion of security technologies.
www.sit.fraunhofer.de

DE

 In-JeT ApS

In-JeT ApS is a concept developer and system integrator in Pervasive Computing
and has extensive knowledge in concepts, user needs and business model creation.
www.in-jet.dk

DK

T-Connect s.r.l

T-connect is engaged in research and development of wireless applications on third
generation platforms (UMTS/WLAN) for mobile communications services.
www.t-connect.it

IT

Telefónica I+D

Telefónica I+D was formed in 1988 to contribute to the technological innovation of

its parent company, by performing research and development activities.
www.tid.es

ES

University of Aarhus

The object-oriented software systems group has experience in programming
languages, software architecture, and software development tools.
www.daimi.au.dk

DK

Innova S.p.A.

Innova S.p.A. is a private company specialised in Technology Transfer services
www.innova-eu.net

IT

University of Reading

The Intelligent Media Systems and Services Research Laboratory provides a centre
of gravity for research within Systems Engineering and Information Technology.
www.reading.ac.uk

UK

 Siemens IT Solutions and Services

Siemens IT Solutions and Services (SIS) is one of the world's leading providers of
solutions and services in the area of electronic and mobile business.
www.c-lab.de

DE

Technical University of Kosice

Technical University of Kosice is the second largest technical university in Slovakia
with about 13,000 BSc and MSc students and about 650 PhD students.
www.tuke.sk

SK

University of Paderborn

The University of Paderborn has a strong background in computer science,
information systems and computer applications.

www.uni-paderborn.de

DE

LinkSmart
®

Middleware

Effective development of applications
in Networked Systems based on a

Service oriented Architecture

The original project was co-funded by the European Commission within the Sixth
Framework Programme

 Contact us at webmaster@linksmart.eu

 For more information go to: http://www.linksmart.eu
 Download the Open Source LinkSmart software from http://linksmart.sourceforge.net

SIXTH FRAMEWORK
PROGRAMME

