
An OWL/SWRL based Diagnosis Approach in a Pervasive Middleware

Weishan Zhang and Klaus Marius Hansen
Department of Computer Science, University of Aarhus

Aabogade 34, 8200 Århus N, Denmark
{zhangws,klaus.m.hansen}@daimi.au.dk

Abstract

Diagnosis is the most important step for achieving self-
healing of systems, which is a challenge in pervasive com-
puting. In this paper, we present a semantic, state machine-
based diagnosis approach for a web-service based middle-
ware. We use OWL ontologies and SWRL to develop both
diagnosis and monitoring rules, based on state changes and
also invocation relationships. Malfunction information and
its resolution are encoded in an OWL ontology as a part of
a Device ontology, and can be used at run time to check how
to resolve malfunction, and further to fulfill self-healing ac-
tivities. SWRL rules at both device level and system level
are designed and will be executed as needed. The evalua-
tions in terms of extensibility, performance and scalability
show that this approach is effective in pervasive service en-
vironment.

1 Introduction and Motivation

Web services are increasingly needed to be adopted as
service provision mechanisms in pervasive computing en-
vironment. This trend is exemplified during the inaugura-
tion phase of the Hydra project(IST-2005-034891), by some
companies that donate us Zigbee devices and other embed-
ded devices that enabling pervasive computing, and express
their wishes for web service enabled devices.

A concrete agriculture scenario that we are considering
in the Hydra project is as followed:
Bjarne is an agricultural worker at a large pig farm in Den-
mark. As he walks through the pens to check whether the
pigs are provided with correct amount of food, his work is
interrupted by a sound from his PDA, indicating that a high
priority alarm has arrived. Apparently, the ventilation sys-
tem in the pig stable has malfunctioned. After acknowledg-
ing the alarm and the system begins to diagnosis and soon
it decides that the cause of the problem is ’power supply off
because of fuse blown’. Then he can prepare a fuse and re-
pair the ventilator. After repairing it, he signs off the alarm,

and writes a log on what he has done.
As can be seen from the above scenario, it is very impor-

tant that the Hydra middleware can provide diagnosis func-
tionality to the end user, or better to achieve self-healing
when there is malfunction. Such kind of self-healing can
not be always finished automatically, for example device
down because of fuse broken. But providing diagnosis and
then resolution suggestions would be the most important
step towards malfunction recovery.

In this paper, we present an OWL ontology (the Web
Ontology language)1 and SWRL (Semantic Web Rule Lan-
guage)2 based diagnosis using state machine and sniffering
of process invocation in the context of the Hydra middle-
ware. The malfunction information and its resolution are
encoded in an OWL ontology as part of a Device ontology,
and can be used at run time to check appropriate resolution
to the malfunction, and further to fulfill self-healing activ-
ities. We use SWRL to develop monitoring and diagnosis
rules, and these rules, together with OWL ontologies, can
help make intelligent decisions on where malfunction oc-
curs and its resolution.

The rest of the paper is structured as follows: Section
2 presents an overview of the Hydra middleware; We then
show the diagnosis ontologies used in Hydra; In section 4,
design of both rules and the Diagnosis Manager are pre-
sented. Section 5 evaluates our work with the extensibility,
performance and scalability. We compare our work with the
related work in section 6. Conclusions and future work end
the paper.

2 Web service based middleware-Hydra

The Hydra project is developing a service-oriented and
self-managed middleware for pervasive embedded and net-
work systems based on web service. According to the avail-
able resources, the function structure of the Hydra mid-
dleware is divided into two parts, namely Application El-

1OWL Web Ontology Language Guide. http://www.w3.org/TR/owl-
guide/

2SWRL specification homepage. http://www.w3.org/Submission/SWRL/

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



ements(AEs) and Device Elements(DEs). AEs are meant
to be running on powerful machines, DEs describe compo-
nents that are usually deployed inside Hydra-enabled de-
vices where small devices maybe involved. The Layered
architecture of the Hydra middleware is shown in Figure 1.

Application Elements

Semantic Layer

S
e
c
u
ri
ty
 L
a
y
e
r

Network Layer

Service Layer

S
e
c
u
ri
ty
 M
a
n
a
g
e
r

Ontology Manager

Device Manager

Event ManagerDiagnosis Manager

Schedule Manager

Network Manager

Policy Manager

Context ManagerService Manager

Device Elements

Semantic Layer

S
e
c
u
ri
ty
 L
a
y
e
r

Network Layer

Service Layer

S
e
c
u
ri
ty
 M
a
n
a
g
e
r

Service Manager Device Manager

Resource Manager

Network Manager

Policy ManagerContext Manager

H
y
d
ra
 M
id
d
le
w
a
re

QoS Manager

Storage Manager Storage Manager

Orchestration Manager

QoS Manager

Figure 1. Hydra middleware Layered architec-
ture

Diagnosis Manager is used to monitor the system condi-
tions and states in order to fulfill error detection and logging
device events. Its functions include system diagnosis and
device diagnosis.

The Event Manager is used to provide publish/subscribe
functionality to the HYDRA middleware. In general, pub-
lish/subscribe communication as provided by the Event
Manager provides an application-level, selective multicast
that decouples senders and receivers in time, space and data.

3 Ontologies used in the Diagnosis Manager

There are several ontologies involved in the diagnosis
process, namely Device ontology, Malfunction ontology,
and StateMachine ontology. The DeviceRule ontology is
used for holding all diagnosis rules as introduced in Section
4.1. The high level structure of the diagnosis ontologies is
shown in Figure 2.

Device

SoftwarePlatform StateMachineHardwarePlatformService Malfunction

Service Malfunction SocketMessageCapabilityClassification

<<import>> <<import>> <<import>> <<import>> <<import>>

ontology

Legend

import

concept
contains

DeviceRule

<<import>>

Figure 2. Diagnosis ontologies structure

The Device ontology is used to define some basic infor-
mation of a Hydra device, for example device type classifi-
cation(e.g. mobile phone, sensor), device model and manu-

facturer, and so on. The device type classification is based
mainly on AMIGO project ontologies [7]. To facilitate di-
agnosis, there is a concept called HydraSystem to model a
system composed of devices to provide services. And there
is a corresponding object property hasDevice which has the
domain of HydraSystem and range as HydraDevice. There
are also concepts used for the monitoring of web service
calls, including SocketProcess, SocketMessage and IPAd-
dress. The HydraDevice concept has a data type property
currentMalfunction which is used to store the inferred de-
vice malfunction diagnosis information at run time and will
be exemplified later.

To enable state based diagnosis, a state machine ontol-
ogy is developed based on [5] with many improvements:
firstly, we add a datatype property isCurrent in order to in-
dicate whether a state is current or not; secondly, we add
a doActivity object property to the State in order to specify
the corresponding activity in a state and this makes the state
machine complete; thirdly, we add a datatype property has-
Result to the Action (including activity) concept in order to
check the execution result at run time. Three other datatype
properties are also added to model historial action results.
This facilitates the specification of diagnosis rule based on
state and activity result and its history.

The device Malfunction ontology is used to model mal-
function and recovery resolutions. We separate the mal-
functions into two categories: Error (including device to-
tally down) and Warning (including function scale-down,
and plain warning). There are also two other concepts,
Cause and Remedy, which are used to describe the origin
of malfunction and its resolution.

A more detailed but simplified view of the ontologies
used in the diagnosis is depicted in Figure 3.

4 Design of the Diagnosis Manager

Hydra implements a service-oriented architecture based
on web service interaction among devices. Thus a reason-
able granularity to build a self-management system on is the
level of web service requests and responses. Furthermore,
we are interested in the states of devices per se, i.e., is the
device operational, stopped, not working and if it is oper-
ational what is the value of its sensor readings (if any) or
its actuator state (if any). This leads us initially to focus on
status reporting of the following two forms:

• State change reporting. State machines are used to re-
port their state changes as events through the Hydra
Event Manager.

• Web service request/reply reporting. The requests and
replies (and their associated data) can be used to anal-
yse the runtime structure of the Hydra systems. Here a
tool called IPSniffer is used to report invocations.

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



 

Figure 3. Partial details of the Diagnosis Manager used ontologies

4.1 Design of SWRL rules

Diagnosis is a complex task which need intelligence
to infer what is the reason for error and its consequence.
The OWL-DL ontologies themselves are hardly expressive
enough to specify diagnosis rules. As an alliance to
OWL, SWRL can be used to write rules to reason about
OWL individuals and to infer new knowledge about those
individuals. A SWRL rule means that if all the atoms in
the antecedent (body) are true, then the consequent (head)
must also be true. In the SWRL rules, the symbol ∧ means
conjunction, ?x stands for a variable, → means implica-
tion; and if there is no ? in the variable, then it is an instance.

Device level rules
Device level rules are used for a certain type of devices

which are supposed to be generic for that type of devices.
The followed is an example of mobile phone battery mon-
itoring, if battery level is less than 10%, a warning will be
published.
device : MobilePhone(?device) ∧
device : hasHardware(?device, ?hardware) ∧
Hardware : primaryBattery(?hardware, ?battery) ∧
Hardware : batteryLevel(?battery, ?level) ∧
swrlb : lessThanOrEqual(?level, 0.1)
→ V eryLowBattery(?device)

Another monitoring rule is if the flow measured from
the flowmeter is more than 16 (gallon/minute), then it is too
high and should be repaired as soon as possible:

device : FlowMeter(?device) ∧
device : hasStateMachine(?device, ?sm) ∧
statemachine : hasStates(?sm, ?state) ∧
statemachine : doActivity(?state, ?action) ∧
statemachine : actionResult(?action, ?r) ∧
abox : isNumeric(?r) ∧ swrlb :
greaterThan(?r, 16.0)→
device : currentMalfunction(device :
Flowmeter, ”FlowHigh”)

The rule for IPSniffer is used for both checking process
id, ip address, port etc. and inferring invoking relationships.
device : messageSourceIP (?message1, ?ip1) ∧
device : ipaddr(?ip1, ?ipa1) ∧
device : messageSourcePort(?message1, ?port1) ∧
device : hasMessage(?process1, ?message1) ∧
device : hasProcessID(?process1, ?pid1) ∧
device : messageTargetIP (?message2, ?ip2) ∧
device : messageSourceIP (?message2, ?ip3) ∧
device : ipaddr(?ip3, ?ipa3) ∧
device : messageTargetPort(?message2, ?port2) ∧
device : hasMessage(?process2, ?message2) ∧
device : hasProcessID(?process2, ?pid2) ∧
swrlb : equal(?port1, ?port2) ∧
device : initiatingT ime(?message1, ?time1) ∧
device : initiatingT ime(?message2, ?t2) ∧
temporal : duration(?d, ?time1, ?t2, temporal :
Milliseconds)
∧ swrlb : lessThanOrEqual(?d, 60000)
→ device : inovoke(?message1, ?message2) ∧

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



sqwrl : select(?ipa1, ?port1, ?pid1, ?ipa3, ?port2, ?pid2, ?time1)

System level rules
System level rules are used to specify rules span multiple

devices in a system. In the introduced agriculture scenario,
thermometers are used to measure both indoor and outdoor
temperature, which are named PicoTh03_Outdoor and
PicoTh03_Indoor respectively. In the summer time, when
outdoor temperature is between 12 and 33 degree, the
indoor should follow the same trend as the outdoor temper-
ature. Or else, we can infer that the ventilator is down.
device : hasStateMachine(device :
PicoTh03Outdoor, ?sm)
∧ statemachine : hasStates(?sm, ?state) ∧
statemachine : doActivity(?state, ?action) ∧
statemachine : actionResult(?action, ?r) ∧
statemachine : historicalResult1(?action, ?r1) ∧
statemachine : historicalResult2(?action, ?r2) ∧
statemachine : historicalResult3(?action, ?r3) ∧
swrlb : add(?tempaverage, ?r1, ?r2, ?r3) ∧
swrlb : divide(?average, ?tempaverage, 3) ∧
swrlb : subtract(?temp1, ?r, ?r1) ∧
swrlb : subtract(?temp2, ?r1, ?r2) ∧
swrlb : subtract(?temp3, ?r2, ?r3) ∧
swrlb : add(?temp, ?temp1, ?temp2, ?temp3) ∧
swrlb : greaterThan(?average, 12.0) ∧
swrlb : lessThan(?average, 33.0) ∧
swrlb : lessThan(?temp, 0) ∧
device : hasStateMachine(device :
PicoTh03Indoor, ?smb)
∧ statemachine : hasStates(?smb, ?stateb) ∧
statemachine : doActivity(?stateb, ?actionb) ∧
statemachine : actionResult(?actionb, ?rb) ∧
statemachine : historicalResult1(?actionb, ?r1b) ∧
statemachine : historicalResult2(?actionb, ?r2b) ∧
statemachine : historicalResult3(?actionb, ?r3b) ∧
swrlb : subtract(?temp1b, ?rb, ?r1b) ∧
swrlb : subtract(?temp2b, ?r1b, ?r2b) ∧
swrlb : subtract(?temp3b, ?r2b, ?r3b) ∧
swrlb : add(?tempb, ?temp1b, ?temp2b, ?temp3b) ∧
swrlb : greaterThan(?tempb, 0)→ device :
currentMalfunction(device :
V entilatorMY 0193, ”V entilatorDown”)

The processing of this rule will get the trend with
the difference of continuous temperature measuring of
indoor and outdoor temperature, and also an instance of
the property (”VentilatorDown”) currentMalfunction of
concept HydraDevice (which is VentilatorMY0193) will be
inferred. Then the Malfunction ontology will be checked
for the resolution of the problem based on the malfunction
cause. In our case, Malfunction ontology gives us the
solution as the ”power supply off because of fuse blown”.

Usage of Malfunction and Device ontology
For example, Bjarne get a warning of ”Grundfos-

PumpMQ345 failed to start”, which is a high priority
task for him as the pump is used for feeding the pigs. A
diagnosis task is initiated to check what is wrong with
the pump, but as a newly installed pump, there is still no
error resolution to this model of pump in the Malfunction
ontology. As a further step, the diagnosis system will
conduct subsumption reasoning and search for the device
Type in the Device ontology, which is found as FluidPump,
and then its manufacturer is also queried. Now another
query to the Device ontology will get a similar pump
called GrundfosPumpMQ335 as of the same type from the
same manufacturer ”Grundfos”. And based on the name
of the error and pump type, the solution from a query to
Malfunction ontology is suggested ”replace a capacitor”,
which is happily the solution to solve the problem.

4.2 Diagnosis manager architecture

Based on the current diagnosis requirements, and also
the status of OWL/SWRL, we come up with the following
architecture for the Diagnosis Manager as shown in Fig-
ure 4, in which the Component Control and Change Man-
agement are enclosed with dashed line, taken Kramer and
Magee [6] three Layered architecture as a reference model.

The bottom of the architecture is the ontologies/rules,
in which knowledge of devices, and state based diagnosis
are encoded. When there are state change events, the de-
vice state machine instance in the state machine ontology
need to be updated, and also these state changes will be
published with state machine state changes as event topic.
The Diagnosis Manager is an event subscriber to the state
machine state change events, it will then update the corre-
sponding state instances in the ontology. At the same time,
this will trigger the diagnosis of the device status, execut-
ing the SWRL rules to monitor the health status of devices,
and also trigger the reasoning of possible device errors and
their resolutions. The Diagnosis Manager will publish the
diagnosis results as an event publisher.

The Diagnosis Manager mainly runs on powerful PC or a
proxy for an embedded device running on a powerful node.
For those node with limited capabilities, only state will be
reported, which can delegate its own diagnosis to other node
or its proxy.

For the actual implementation, we adopted a mix of the
Blackboard architecture style and the Layered architecture,
and use the observer pattern in both the updating of state
machine ontology and inferred result parsing.

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



Reasoner

MasterCopyOfRules/Ontolgoies

RuleProcessing

RuleInterpretation/Eventpublishing

OntologyProcessing

ReasoningInterpretation

StateUpdating StatePublishing

DeviceStateMachine

RuleEngine

Component Control

Change 

management

Figure 4. Diagnosis Manager architecture

5 Evaluation

5.1 Extensibility

At present, the extensibility is evaluated by the applica-
bility to new devices added to a system. We started the de-
velopment of Diagnosis Manager with the rule for temper-
ature monitoring. After finishing the implementation and
testing, we then try to handle the flowmeter diagnosis rules.
The steps involved are:
1. Add the flowmeter device to the HydraSystem concept
instance called ”Pig” in the Device ontology.
2. Add the flowmeter state machine instance to the
StateMachine ontology.
3. Add the flowmeter state machine instance to the has-
StateMachine property of the ”flowmeter” device.
4. Add flowmeter diagnosis rule to the DeviceRule on-
tology.

After this, we test the Diagnosis Manager and it runs
very well. No single line of Diagnosis Manager code needs
to be changed. In summary, the adding of new devices to
a certain system is very straightforward. The adding of
new devices can be at run time, if the rules for the new de-
vices are existing, then the diagnosis process can be directly
working for the new devices.

5.2 Performance

The following software platform is used for measur-
ing performance: Protege 3.4 Build 125, JVM 1.6.02-b06,
Heap memory is 266M, Windows Vista. The hardware plat-
form is: Thinkpad T60 Core2Duo 2G CPU, 7200rpm hard-
disk, 2G DDR2 RAM. The time measurement is in millisec-
ond. The size of DeviceRule ontology is 210,394 bytes, and
contains 22 rules.

We measured the performance as shown in Table 1. An
interesting thing is after some time of running, the Diagno-

sis Manager is running stably with the total time in 260-270
ms for processing an event, a bit faster than the one when it
starts. Here the parsing of the inferred result is running in a
multi-threaded way in the Diagnosis Manager.

Update InferringTime AfterEventTillInferred
383 380 382
322 319 321
282 278 282
272 269 271
265 263 265
270 267 269
268 266 269

Table 1. Diagnosis Manager performance

5.3 Scalability

The scalability is evaluated through clients continuously
publishing their states (thermometers and flowmeters) as
events, in an almost parallel way and each of the client
sends messages as fast as possible in a loop. Then we mea-
sure how long it will be, starting from the publishing till the
end of inferring and publish related inferring result. Time
needed (y-axis) is shown in Figure 5 (x-axis shows the num-
ber of events) . We can see that the time taken is in linear
with the events need to be processed.

 

y = 425.35x - 31.43

R² = 1.00

0

50000

100000

150000

200000

250000

0 100 200 300 400 500 600

Figure 5. Diagnosis Manager scalability

6 Related work

Kramer and Magee [6] recently proposed a reference
model for self-managed systems, which is composed of
component control, change management and goal manage-
ment. In this paper, we largely followed this work for the
Layered architecture, but mainly focus the component con-
trol and change management. At the same time, a mix of
Blackboard architecture and Layered architecture are ap-
plied to improve performance and extensibility.

Self-healing is one of the main challenges to autonomic
pervasive computing. Generally speaking, our approach ap-
plied the same idea of ETS [2], in terms of the using of
states for detecting source of failure, and then notification

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



of failure source. And this process is actually universal for
error detections. Our ontology and SWRL rule based ap-
proach provides a way of intelligent detection and resolu-
tion, which is not easily achievable by ETS.

Work in [1] shares some similarity with us on the us-
age of semantic web approach for achieving self-managing.
Our approach is non-intrusive, SWRL rules are automati-
cally executed using state machine instead of explicitly in-
serting sensor code to program, and is more suitable for the
characteristics of pervasive devices.

Various failures in a pervasive system are classified in
[4], and an architecture for fault tolerant pervasive comput-
ing is proposed. We focus not only on device failure moni-
toring using the device state machine, but also system level
detection using the relationships of different state machine
instances. In addition, our approach can be more intelligent
in terms that ontology reasoning can help the diagnosis.

There are many researches from traditional artificial in-
telligence point of view dealing with the diagnosis in var-
ious field, e.g. [3]. These traditional approaches are not
utilizing the context ontologies that are already there in per-
vasive systems and are used for context-awareness and other
purposes. The open world assumption in OWL/SWRL and
hence in our approach makes our proposed approach well
suited for the openness of the pervasive computing envi-
ronment, which automatically rejects the approaches using
Prolog kind of rules which use close world assumption.

7 Conclusions and future work

OWL/SWRL is adopting an open world assumption
which is in nature very suitable for the pervasive computing
systems, where the openness and dynamicity dominate the
interaction and function. OWL is widely used in pervasive
computing, for the purpose of context awareness, service
selection and composition. The potentials of OWL and con-
text awareness could be further extended as we have shown
in this paper.

Diagnosis is the most important step for achieving self-
healing, which is a challenge in pervasive computing. We
present a semantic and state machine based diagnosis ap-
proach using OWL ontology and SWRL, for the Hydra mid-
dleware. The malfunction information and its resolution are
encoded in an OWL ontology, and can be used at run time
to infer the solution to the malfunction, and further to fulfill
self-healing activities. SWRL is used to develop monitoring
and diagnosis rules, which can help make intelligent deci-
sions when there is malfunction occurs. IPSniffer will help
diagnosis on devices that are dead or no response which
provides fault tolerance in our approach.

The evaluations relieved us for the worrying of perfor-
mance of the OWL/SWRL based Diagnosis Manager. In or-
der to improve performance, we followed a mix of both the

Blackboard architecture style and the Layered architecture
style. The evaluations show that the Diagnosis Manager is
usable in terms of extensibility, performance and scalabil-
ity. The proposed approach provides an uniform, coherent
and natural way to fully utilize the existing OWL/SWRL
reasoning power, and extend it for considering the dynamic
aspects of the pervasive system for diagnosis, which is very
suitable for the characteristics of the pervasive computing
environment.

We are improving the IPSniffer based diagnosis that only
reports invocation relationships at present. The integration
with security manager and ontology manager are under way.
Probability in OWL/SWRL is to be added in the future to
make the diagnosis more intelligent. More experiments in
a larger scale will be conducted for testing the resolving of
rule conflicts, accuracy of diagnosis and so on.

Acknowledgements

The research reported in this paper has been supported
by the Hydra EU project (IST-2005-034891).

References

[1] B. J. O. A. R. Haydarlou, M. A. Oey and F. M. T. Bra-
zier. Use-case driven approach to self-monitoring in au-
tonomic systems. The Third International Conference
on Autonomic and Autonomous Systems, 2007.

[2] S. Ahmed, M. Sharmin, and S. Ahamed. ETS (Efficient,
Transparent, and Secured) Self-healing Service for Per-
vasive Computing Applications. International Journal
of Network Security, 4(3):271–281, 2007.

[3] R. Barco, L. Díez, V. Wille, and P. Lázaro. Auto-
matic diagnosis of mobile communication networks un-
der imprecise parameters. Expert Systems With Appli-
cations, 2007.

[4] S. Chetan, A. Ranganathan, and R. Campbell. Towards
fault tolerant pervasive computing. Technology and So-
ciety Magazine, IEEE, 24(1):38–44, 2005.

[5] P. Dolog. Model-driven navigation design for seman-
tic web applications with the uml-guide. Engineering
Advanced Web Applications, In Maristella Matera and
Sara Comai (eds.), Dec. 2004.

[6] J. Kramer and J. Magee. Self-Managed Systems: an
Architectural Challenge. International Conference on
Software Engineering, pages 259–268, 2007.

[7] I. A. Project. Amigo middleware core: Prototype im-
plementation and documentation, deliverable 3.2. In
IST-2004-004182, 2006.

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008




