
Noname manuscript No.
(will be inserted by the editor)

Jeppe Brønsted · Klaus Marius Hansen · Mads Ingstrup

A Survey of Service Composition Mechanisms in Ubiquitous
Computing

the date of receipt and acceptance should be inserted later

Abstract Composition of services, i.e., providing new ser-
vices by combining existing ones, is a pervasive idea in ubiq-
uitous computing. We surveyed the field by looking at what
features are actually present in technologies that support ser-
vice composition in some form. Condensing this into a list
of features allowed us to discuss the qualitative merits and
drawbacks of various approaches to service composition, fo-
cusing in particular on usability, adaptability and efficiency.
Moreover, we found that further research is needed into
quality-of-service assurance of composites and into contin-
gency management for composites—one of the concerns
differentiating service composition in ubiquitous computing
from its counterpart in less dynamic settings.

1 Introduction

The ability to seamlessly compose the services from various
devices in a more or less ad-hoc manner is a frequently em-
phasised feature of ubiquitous computing (cf. e.g. [19–21]).
Given the abundant mention of this feature in visions and
scenarios, one should expect a sizeable body of research and
development work dedicated to its realisation. However, in
practise we have found far fewer cases than expected where
service composition for ubiquitous computing has been a
main focus of research efforts. By “main focus” we mean
that actually designing, implementing and evaluating a com-
position technology has been a main part of the contribution
of the work. With that said, however, work has been carried
out in the area. This paper presents an initial survey of it and
draws out the experiences and lessons it holds for contin-
ued development of the field. In particular, there are several
reasons that prompted us to do this work.

Firstly, we believe, with our colleagues whose work we
survey, that there is a real need for good composition mech-
anisms. This need arises on a variety of temporal scales, in-
cluding, for instance, the user on fieldwork who is prompted

Department of Computer Science, University of Aarhus
Aabogade 34, 8200 Aarhus M, Denmark
E-mail: {jb,klaus.m.hansen,ingstrup}@daimi.au.dk

by immediate circumstance to compose a set of services that
allows a display on a GPS device to temporarily replace a
broken one on an otherwise functional cell-phone. Or the ad-
ministrator who needs to tailor commercially acquired ser-
vices to the needs of people in his or her particular organi-
sation. Towards the goal of developing a good service com-
position mechanism, our contribution is to help understand
what “good” might mean when talking about service compo-
sition for ubiquitous computing, or rather to give an account
of advantages and disadvantages of various approaches and
identify areas that need further attention from the research
community.

Secondly, we wish to support the claim of service com-
position for ubiquitous computing as an area of study in it-
self. Composition is a natural concept around which to struc-
ture ubiquitous systems and individuate parts of it that are
suitably subject to e.g. contingency management, applica-
tion, or storing, as witnessed by its frequent use as a new
and more open-ended replacement for the traditional appli-
cation concept of desktop computers. This makes it a viable
topic of research in itself.

The paper is organised as follows. In section 2 we de-
scribe the approach we have used to arrive at the categorisa-
tion of the surveyed composition mechanisms used to com-
pare their features in table 1. Based on this comparison, we
move on to a more qualitative discussion in section 3, before
concluding in section 4.

2 Service composition categorisation

We only consider architectures that enable composition of
services. The following definition of a service is used to de-
cide which technologies we include in the survey:

A service is a unit of runtime software that is ac-
cessible by others

This allows for variation in the rationales of service defini-
tions used in the surveyed papers. A further constraint is that
the technologies should be targeted towards ubiquitous com-
puting. As a minimum, this means the range of devices the



2

technology works with is not limited to desktop PCs, and
that it allows for distributed deployment of the composed
services. Finally, we take composition to be a grouping of
services interacting with a certain purpose.

In the following, we outline our categorisation of ser-
vice composition features and give examples of middleware
that implements those features. We do not propose a rigor-
ous, would-be normative definition of which features are of
relevance to service composition in ubiquitous computing.
Rather we studied features what are present in systems that
can be said to support service composition for ubiquitous
computing.

The overall purpose of the survey is to compare and
position each architecture relative to the others in terms of
the quality trade-offs they engender. In order to enable this
we examine what features each composition mechanism has
within a select set of concerns.

The categorisation framework presented in this section
is divided into three main parts that have been selected to
inform the discussion on qualitative trade-offs, and to ex-
pose variation points in the technologies surveyed. The first
part concerns by who, when, and how service composition
is specified. The second part deals with runtime properties
of the technologies and the third part concerns how the com-
posite is deployed and how it has been evaluated. In table 1,
the categorisation framework is applied to the surveyed tech-
nologies. In the following sections, the first word in italics
describes a column in table 1.

2.1 Specification

Specified by The first step in establishing service composi-
tion is to specify what should be composed and how. The
mechanism used for this can be aimed at developers as a
tool for constructing general applications, or it can be aimed
at the user to let him tailor an application for his particular
needs. If the developer specifies the composite he can only
try to anticipate what services will be available at runtime,
whereas if the user specifies the composite he can design the
composite from the available services and compose services
and devices in new unanticipated ways as in [5, 21].

In Service Composition for Mobile Environments
(SCfME) [3] which encompasses protocols for service com-
position in mobile ad hoc network environments, the com-
position is specified by application developers through a
DAML description [1] of a “Description-Level Service
Flow” (DSF) in which sequences of services may be de-
scribed.

Another example is ICrafter [19] in which users may
combine services from different devices and have an aggre-
gated user interface generated.

With UbiDev [14] an application developer supplies an
ontology, classifiers, and user interfaces for services in an
application. The classifiers map resources on devices into
concepts in the ontology. A service is then defined as an
atomic action that transforms an input resource yielding a

new resource as output. Services are constrained by the con-
cept (from the ontology) that it accepts as argument, and the
concept it produces as output.

Specified at The composite can be specified at development
time before the composition framework is up and running
or at runtime. Note that if the composite is specified before
runtime, it implies that it is done by a developer since the
user, at that time, has no way of interacting with the system.
If the composite can be specified at runtime, there is no need
for restarting the composition framework.

Both ICrafter and SCfME provide for runtime com-
position specification. In ICrafter, users may explore ser-
vices available at runtime through a general purpose Inter-
face Manager (IM). With the interface of the IM the avail-
able services can be explored and a subset selected. An ag-
gregate interface is then requested for the selected set of
services. In SCfME an application developer may supply
new DSFs at runtime and have these bound dynamically to
an “Execution-Level Service Flow” (ESF) containing refer-
ences to actual services.

UbiDev is more static in the sense that an ontology and
corresponding classifiers need to be provided prior to de-
ploying the application. To change the possible service com-
positions, either the ontology or the classifiers need to be
changed, something that appears to be only possible at de-
velopment time.

Specified in The specification can be specified by provid-
ing source code, configurations, or interacting with a tool. If
the composite is specified by user interaction, an underlying
representation has to be available to make the specification
persistent.

In ICrafter, the composition is specified by interacting
with a tool in which services are rendered. Services are de-
scribed with a SDL (Service Description Language) that in-
cludes a simple type system oriented towards UI generation.

In SCfME, the service composition is described via a
configuration (a DAML XML document) and in UbiDev the
specification is partly programmatic since application devel-
opers need to supply classifiers.

Level The services in the composition specification can be
represented as instances, types, or implicitly. In the case of
instances, a particular service is bound to the composite by
e.g. an URN [16]. If the services are specified by types there
can be several candidates for each service specified. Finally,
if the user instead of specifying how services are connected,
requests a task from the framework that has to be resolved
into a composition of services, we regard the services as be-
ing specified implicitly.

With respect to the level of description, SCfME is char-
acteristic of an approach in which the composition is de-
scribed at a type level and resolved at runtime by the service
composition implementation to an instance level. ICrafter,
on the other hand, operates only on an instance level in that



3

it is specific services that users select. Finally, UbiDev op-
erates on an implicit level based on the ontology and classi-
fiers specified. One example is a generic messaging service,
document to display that can be adapted to the context by
UbiDev. If the user context is a personal phone, UbiDev will
compose the services ascii to wav, wav to adpcm, and ad-
pcm to voice to provide the document to display service.

Quality of Service (QoS) A few of the technologies have
support for specifying quality of service requirements in the
composite specification. If, e.g., the services are specified as
types the selection of the actual instances can be guided by
the quality of service specification.

In the Amigo service composition mechanism [22]
services are described as semantic Web services (using
OWL-S [15]) in which atomic processes have QoS attributes
with values obtained from runtime measurements. An ex-
ample of a QoS requirement would be that latency should
be less a threshold. At runtime, an abstract specification
of a composite service is matched against possible realisa-
tions, the latencies for the realisations are calculated, and
the best composition is chosen (also subject to other con-
straints) [17].

2.2 Runtime

Contingencies The technologies surveyed provide different
levels of support for contingency handling. The trivial option
is to have no support for contingencies at all. A slightly more
advanced solution is to detect the contingency and alert the
user, and a natural extension of this approach is to resolve the
contingency automatically. It should be noted that in some
cases, it is impossible to resolve contingencies automatically
and in these situations, the user should be in the loop.

As an example, in SCfME the state of the execution of a
composition is check-pointed by sending partial results back
to the service requester. If the Composition Manager fails,
the service requester is notified and may create a new con-
crete ESF based on the original abstract DSF and its latest
checkpoint and finds a new composition manager.

In UbiDev, since the composition is implicit and dy-
namic, contingencies such as partial failures will be handled
automatically as classifiers find new ways of realising com-
positions.

Resource use Since many devices for ubiquitous computing
have limited resources its relevant to look at resource use.
Since its not feasible to make comparable measurements for
all the technologies, we have made a rough estimate of what
kind of system the composition mechanism requires. One
type is a server platform and another is a typical PDA. A
third category would be a smaller sensor/actuator platform
such as Motes (http://www.tinyos.net/).

A number of solutions apply semantic Web technology
(e.g., SCfME and Amigo) which means that at least parts of
the middleware will not scale to low-end devices. Other than

that most service composition mechanisms seem to aim at
PDA-type device and none focuses on sensor/actuator plat-
forms.

Scalability As with resource use we only provide an esti-
mate of how the composition mechanism scales.

In Amigo, a part of the service composition mechanism
was to build a “global” automaton. It is not clear what the
scope of that automaton is, but together with the use of
OWL-S this means that the scalability of Amigo is low.

All devices in one.world run the one.world system plat-
form. Services are composed in a decentralised manner and
thus no node has the sole responsibility of the composite.
This makes it possible to create composite services consist-
ing of arbitrarily many services.

2.3 Deployment

Infrastructure In ubiquitous computing environments ser-
vices might not be connected at all times. Devices may enter
and leave the network and therefore it is important whether
the composite has to have a fixed connection during oper-
ation or whether devices can enter and leave on an ad hoc
basis.

In SCfME devices are peers and communicate via ad
hoc protocols. In particular, a Group-based Service Routing
(GSR) on-demand protocol in which the route is constructed
during service discovery is used for routing service invoca-
tions.

In contrast, ICrafter assumes a fixed infrastructure in
which a global communication infrastructure which resem-
bles a tuplespace may be constructed.

Topology Some of the mechanisms require that a central
node acts as a coordinator for the composite and thereby
imposing a centralised structure in the composite, whereas
other mechanisms allows for a decentralised structure.

SCfME is decentralised in that after an ESF is created,
any node in the system can be used as a Composition Man-
ager that handles the execution of the composition. The
Composition Manager may be dynamically changed during
the execution.

Based on finite state automata for individual OWL-S
processes, the Amigo service composition mechanism
builds a global finite state automaton for all services. In this
sense, the Amigo service composition mechanism relies on
a central component.

Evaluation Most of the technologies presented are evalu-
ated by demonstrating that the composition mechanism can
be used to implement various ubiquitous computing ap-
plications. Example applications invented by applications
developers typically demonstrate a wide range of features
whereas application scenarios developed in cooperation
with users, have emphasis on posing relevant challenges. In

http://www.tinyos.net/


4

Table
1

C
ategorization

ofService
C

om
position

M
echanism

s

Technology
C

om
position

Specification
R

untim
e

D
eploym

ent

Specified
by

Specified
at

Specified
in

L
evel

Q
oS

C
ontingencies

R
esource

use
Scalability

Infrastructure
Topology

E
valuation

A
m

igo
[17,22]

E
nd-users

R
untim

e
E

nd-U
serint.

Im
plicit

R
untim

e
A

utom
atic

PD
A

+Server
L

ow
Fixed

C
entralized

Sce.perf.
A

ura
[8]

E
nd-users

R
untim

e
C

onfiguration
Types

R
untim

e
A

utom
atic

PD
A

+Server
U

nknow
n

A
d

H
oc

C
entralized

E
xam

ple
D

aidalos
[23]

U
nknow

n
R

untim
e

C
onfiguration

Types
R

untim
e

R
untim

e
U

nknow
n

A
verage

U
nknow

n
C

entralized
E

xam
ple

G
A

IA
[20]

A
pp.D

evs
D

ev.tim
e

C
onfiguration

Types
N

one
A

utom
atic

PD
A

+Server
U

nknow
n

Fixed
C

entralized
E

xam
ple

IC
rafter[19]

E
nd-users

R
untim

e
E

nd-U
serint.

Instances
N

one
N

one
PD

A
A

verage
Fixed

C
entralized

E
xam

ple
O

bje
[5]

E
nd-users

R
untim

e
E

nd-U
serint.

Instances
N

one
U

nknow
n

PD
A

U
nknow

n
A

d
H

oc
D

ecentralized
E

xam
ple

one.w
orld

[9,10]
A

pp.D
ev

R
untim

e
Source

C
ode

Instances
N

one
D

etection
J2SE

H
igh

A
d

H
oc

D
ecentralized

Sce.,U
sab.,Perf.

PalC
om

[21]
E

nd-users
R

untim
e

C
onfiguration

Instances
N

one
A

utom
atic

PD
A

L
ow

A
d

hoc
C

entralized
Scenario

Paths
[13]

A
pp.D

evs
R

untim
e

C
onfiguration

Im
plicit

N
one

N
one

PD
A

A
verage

Fixed
C

entralized
Scenario

SC
fM

E
[3]

A
pp.D

evs
R

untim
e

C
onfiguration

Types
N

one
D

etection
PD

A
a

L
ow

A
d

hoc
D

ecentralized
Perform

ance
SpeakE

asy
[4,6,18]

E
nd-users

R
untim

e
E

nd-U
serint.

Instances
N

one
D

etection
PD

A
H

igh
A

d
H

oc
D

ecentralized
E

x.,U
sab.

U
biD

ev
[14]

A
pp.D

evs
D

ev.tim
e

Source
C

ode
Im

plicit
N

one
A

utom
atic

PD
A

+Server
L

ow
A

d
H

oc
C

entralized
E

xam
ple

a
H

ow
ever,C

om
position

M
anagers

need
to

be
able

to
handle

D
A

M
L

some of the projects, it is evaluated how usable the compo-
sition mechanism is for users and/or developers, and, finally,
some projects present measurements of various performance
parameters.

In SpeakEasy, an example application, Casca, supports
collaborative work by letting users share files, devices, and
services on an ad-hoc basis, and thus demonstrates various
features of the composition mechanism. Usability is evalu-
ated by observing users interacting with the SpeakEasy ser-
vice browser to accomplish a task.

The PalCom service composition mechanism have been
used to implement a set of application scenarios that have
been developed in cooperation with end-users using partici-
patory design techniques. The scenarios range from enabling
landscape architects to visualise digital data in the context of
the physical world to supporting rehabilitation of children
with Downs syndrome.

3 Qualitative aspects of service composition

In the following we discuss composition mechanisms from
an architectural perspective taking the categorisation pre-
sented as an outset. In doing so, we look at (architectural)
software qualities [12] of the composition mechanisms that
are of particular relevance to ubiquitous computing.

3.1 Usability

Usability is defined in one the predominant quality frame-
works as “concerned with how easy it is for the user to ac-
complish a desired task and the kind of user support the sys-
tem provides.” [2, p. 90]. This includes understandability,
learnability, operability, and attractiveness [12].

Although the traditional view is that usability is first and
foremost determined by the user interface of systems, there
are several ways in which the architecture may strongly in-
fluence the usability of a system, e.g. the support for undo
functionality [2]. Similarly, the service composition mecha-
nism influences usability in a number of ways.

Our main criteria for assessing the usability of a com-
position mechanism is whether the composite services built
with a given mechanism suit the users optimally given what
services are available for composition. A strong determinant
of this is how the composite services come to exist. An-
other is whether a composite, once created, can adapt (or be
adapted) to change of circumstance, such as due to contin-
gent availability of services and resources or malleability of
users’ intentions with the composition. We discuss the first
issue below and the second in the next subsection.

Regarding the first, we may question whether developer-
specified, users-specified, or e.g. automatic synthesis based
on interpretation of high-level sentences [7] leaves the user
better off. The PalCom assembly concept is based on an
elaborate conception of this issue. It is held that autonomic,



5

perhaps AI-based, composition or developer-specified com-
position based on anticipation of the user’s needs are fine in
so far as the resulting composite does what the user wants it
to. However these approaches are for a variety of reasons not
flawless and complete enough to work consistently and so
they need to be supplemented by architecture and tool sup-
port that empowers the user to create composites or modify
existing ones to suit their purpose. [11]

Thus the way a composite service is specified is influen-
tial on usability by (1) deciding whether the users can spec-
ify composite services themselves, (2) whether they can do
so at runtime and (3) how it is done. Only 5 of the 12 sur-
veyed technologies enable end-users to specify composite
services1. Non-support for end user composition appears in
several cases to be due to the focus of the research project in
question rather than a fundamental constraint of the architec-
ture it produces: In 3 of the remaining 7 composition mech-
anisms the composite is specified in a configuration file and
at runtime. These are arguably only a composition tool away
from supporting end-user composition, albeit the configura-
tion file format may be more or less constraining depending
on its level of support for scripting.

In general, the considered composition mechanisms may
be geared more towards the user or the developer. In ICrafter,
for instance, the composition is explicit mainly in the tools
used by the user, rather than at the architectural level.
Speakeasy, in contrast, does not provide tools for the end
user to do composition, but consists of a more general frame-
work that developers can use in their applications. Concern-
ing operability we must assume users have a greater range of
tasks they can perform if the composition mechanism allows
them to specify new composites, and that this also allows for
greater adaptability in the short term.

3.2 Adaptability

Adaptability is the “capability of the software product to be
adapted for different specified environments without apply-
ing actions or means other than those provided for this pur-
pose for the software considered” [12, p. 11]. (In [2, p. 80]
this is related to runtime ‘modifiability’).

The majority of the surveyed composition mechanisms
(9 out of 12) allow service composition to be specified at
runtime. Furthermore, most mechanisms do service discov-
ery and coordination based on specification of needed types
of services. This all supports adaptability which is arguably a
central quality of ubiquitous computing systems that are of-
ten characterised as being able to work in a heterogeneous,
changing system context. SCfME, e.g., has the possibility of
providing a high-level (type-based) description of a needed
service at runtime.

The three dimensions of specification imply different
temporal scales at which adaptation can be supported.

1 PalCom Assemblies, listed in table 1 as being specified in a config-
uration file, has at least one tool for allowing users to compose services
(it uses the parsed configuration file as a living representation, and gen-
erate a file one when it is saved)

Source-code and developer based specification that happens
at development time necessitates a much longer turn-around
time for adaptations than do end-users operating at runtime.

On the other hand, adaptability is less well supported for
contingencies such as services disappearing or failing. An
example, though, is UbiDev in which the Service Manager
is responsible for rebinding services upon partial failure.

Another aspect of adaptability is in deployment where
supporting an ad hoc infrastructure in a decentralised
topology has the potential of being most adaptive. Obje,
one.world, SCfME, and SpeakEasy all support this combi-
nation whereas none of these have automatic contingency
management.

3.3 Efficiency

Efficiency is the “capability of the software product to pro-
vide appropriate performance, relative to the amount of re-
sources used, under stated conditions” [12, p. 10]. This per-
tains to both time behaviour and resource utilisation such
as memory use. Again, this is arguably a central quality of
ubiquitous computing in that embedded systems often play
a central role.

It is characteristic that none of the surveyed appear to
scale to low-end devices such as sensors even though this
may be relevant. In addition, few of the composition mecha-
nisms are highly scalable with one.world and SpeakEasy as
exceptions.

4 Conclusions and Future Work

This paper has presented an initial survey of service compo-
sition in ubiquitous computing. Quite a few service compo-
sition mechanisms exist of which we have only reported on
a few here. In doing so, however, it has been characteristic
that no papers have focused mainly on service composition.
The characteristics that we have outlined show that there are
indeed opportunities for doing so.

In particular, service composition is entangled with
several complex features such as service discovery and
matching, contingency management, and reconfiguration
and therefore provides a good frame around which to ex-
plore those features and their interrelation. This, however, is
an area where further research is needed: the surveyed tech-
nologies only begin to scratch the surface of contingency
management and efficient resource management. Likewise,
more work is needed to explore the relationship between
manual and autonomic execution of functionality. Concern-
ing the notion of service composition, we found very lim-
ited signs of research that leveraged the result of previous
research in the area. Such leverage is arguably easier to
achieve with a common conceptualisation of the research
area, and we consider this survey a step towards that in ad-
dition to providing an overview.

The obvious further work on this survey is to make it
more complete in several ways. One is by including further



6

examples of relevant ubiquitous computing systems. An-
other is by considering other forms of service composition
(such as the ones used for web services) and discuss their
relevance to ubiquitous computing. Both of these directions
we believe will benefit the development of quality service
composition mechanisms in ubiquitous computing.

Acknowledgements

The research presented in this paper has been partly funded
by the EU projects “PalCom” (IST-002057; http://www.
ist-palcom.org) and “Hydra” (IST-034891; http://
www.hydra.eu.com).

References

1. ANKOLEKAR, A. ET AL. DAML-S: Web service description for
the Semantic Web. In Proceedings of ISWC ’02 (2002), vol. 2342
of LNCS, Springer-Verlag, pp. 348–363.

2. BASS, L., CLEMENTS, P., AND KAZMAN, R. Software Architec-
ture in Practise, 2nd ed. Addison-Wesley, 2003.

3. CHAKRABORTY, D., JOSHI, A., FININ, T., AND YESHA, Y. Ser-
vice composition for mobile environment. Mobile Networks and
Applications 4, 10 (August 2005), 435–451.

4. EDWARDS, W. K., NEWMAN, M. W., SEDIVY, J., AND IZADI,
S. Challenge: recombinant computing and the speakeasy ap-
proach. In Proceedings of ACM MobiCom (New York, USA,
2002), ACM Press, pp. 279–286.

5. EDWARDS, W. K., NEWMAN, M. W., SEDIVY, J. Z., AND
SMITH, T. F. Bringing network effects to pervasive spaces. IEEE
Pervasive Computing 4, 3 (2005), 15–17.

6. EDWARDS, K., ET AL. Using speakeasy for ad hoc peer-to-peer
collaboration. In Proceedings of ACM CSCW ’02 (2002), ACM
Press, pp. 256–265.

7. FUJII, K., AND SUDA, T. Dynamic service composition using se-
mantic information. In Proceedings of the 2nd International Con-
ference on Service Oriented Computing (New York, New York,
U.S.A, Nov. 2004), ACM.

8. GARLAN, D., SIEWIOREK, D., SMAILAGIC, A., AND
STEENKISTE, P. Project Aura: toward distraction-free per-
vasive computing. Pervasive Computing, IEEE 1, 2 (2002),
22–31.

9. GRIMM, R. One. world: Experiences with a Pervasive Computing
Architecture. IEEE Pervasive Computing 3, 3 (2004), 22–30.

10. GRIMM, R., DAVIS, J., LEMAR, E., MACBETH, A., SWANSON,
S., ANDERSON, T., BERSHAD, B., BORRIELLO, G., GRIBBLE,
S., AND WETHERALL, D. System support for pervasive applica-
tions. ACM Trans. Comput. Syst. 22, 4 (2004), 421–486.

11. INGSTRUP, M. Towards distributed declarative architectural re-
flection. PhD thesis, University of Aarhus, 2006.

12. ISO/IEC. Software engineering—product quality, part 1–4, 2001.
ISO-9126-1,-2,,3,-4.

13. KICIMAN, E., AND FOX, A. Using dynamic mediation to inte-
grate COTS entities in a ubiquitous computing environment. In
Proceedings of HUC2000 (2000), no. 1927 in LNCS, pp. 211–
226.

14. MAFFIOLETTI, S., KOUADRI, M., AND HIRSBRUNNER, B. Au-
tomatic resource and service management for ubiquitous com-
puting environments. Pervasive Computing and Communications
Workshops, 2004. Proceedings of the Second IEEE Annual Con-
ference on (2004), 219–223.

15. MARTIN, D., ET AL. Bringing Semantics to Web Services: The
OWL-S Approach. Proceedings of the First International Work-
shop on Semantic Web Services and Web Process Composition
(SWSWPC 2004) (2004), 6–9.

16. MOATS, R. URN Syntax. RFC 2141 (Proposed Standard), May
1997.

17. MOKHTAR, S., LIU, J., GEORGANTAS, N., AND ISSARNY, V.
QoS-aware dynamic service composition in ambient intelligence
environments. In Proceedings of IEEE ASE (2005), ACM Press
New York, NY, USA, pp. 317–320.

18. NEWMAN, M., ET AL. Designing for serendipity: supporting end-
user configuration of ubiquitous computing environments. In Pro-
ceedings of DIS ’02 (New York, NY, USA, 2002), ACM Press,
pp. 147–156.

19. PONNEKANTI, S., LEE, B., FOX, A., HANRAHAN, P., AND
WINOGRAD, T. ICrafter: A Service Framework for Ubiquitous
Computing Environments. Proceedings of Ubicomp 1 (2001).

20. ROMÁN, M., ET AL. Dynamic application composition: Cus-
tomizing the behavior of an active space. In Proceedings of IEEE
PERCOM (Washington, DC, USA, 2003), IEEE Computer Soci-
ety, p. 169.

21. SVENSSON, D., HEDIN, G., AND MAGNUSSON, B. Pervasive
applications through scripted assemblies of services. In Proceed-
ings of 1st International Workshop on Software Engineering of
Pervasive Services (2006).

22. VALLEE, M., RAMPARANY, F., AND VERCOUTER, L. Flexible
Composition of Smart Device Services. In The 2005 International
Conference on Pervasive Systems and Computing (PSC-05), Las
Vegas, Nevada, USA., June (2005), pp. 27–30.

23. YANG, Y., MAHON, F., WILLIAMS, M. H., AND PFEIFER, T.
Context-aware dynamic personalised service re-composition in a
pervasive service environment. In Proceedings of Ubiquitous In-
telligence and Computing (2006), vol. 4159 of LNCS, Springer,
pp. 724–735.

http://www.ist-palcom.org
http://www.ist-palcom.org
http://www.hydra.eu.com
http://www.hydra.eu.com

	Introduction
	Service composition categorisation
	Qualitative aspects of service composition
	Conclusions and Future Work

